Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the essential characteristics, impacting their performance. This study evaluates inks based on sodium alginate (SA), hydroxypropyl cellulose (HPC H), and hydroxypropyl methylcellulose (HPMC K100 and K4) for PAM 3D printing by analyzing their rheology.
View Article and Find Full Text PDFInterest in 3D printing oral thin films (OTFs) has increased substantially. The challenge of 3D printing is film printability, which is strongly affected by the rheological properties of the ink and having suitable mechanical properties. This research assesses the suitability of sodium starch glycolate (SSG), a swellable cross-linked biopolymer, on ink rheology and the film's mechanical properties.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2023
A highly porous additive, Neusilin, with high adsorption capability is investigated to improve bulk properties, hence processability of spray-dried amorphous solid dispersions (ASDs). Griseofulvin (GF) is applied as a model BCS class 2 drug in ASDs. Two grades of Neusilin, US2 (coarser) and UFL2 (finer), were used as additives to produce spray-dried amorphous composite (AC) powders, and their performance was compared with the resulting ASDs without added Neusilin.
View Article and Find Full Text PDFThe aim of this work is to present a modeling tool to describe drying kinetics and delineate evolving physical and chemical behavior of multicomponent droplets during drying. Conservation equations coupled with population balance equations (PBE) are used to achieve this goal. Modeling results are gauged with single salt-water droplet drying from literature and show congruent trends.
View Article and Find Full Text PDFThe U.S. Food and Drug Administration (FDA) emphasizes drug product development by Quality by Design (QbD).
View Article and Find Full Text PDFThree dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing.
View Article and Find Full Text PDFPurpose: Oral direct compressible tablets are the most frequently used drug products. Manufacturing of tablets requires design and development of formulations, which need a number of excipients. The choice of excipients depends on the concentration, manufacturability, stability, and bioavailability of the active pharmaceutical ingredients (APIs).
View Article and Find Full Text PDFDue to the complex nature of the pharmaceutical supply chain, the industry faces several major challenges when it comes to ensuring an adequate supply of quality drug products. These challenges are not only the causes of supply chain disruptions and financial loss, but can also prevent underserved and remote areas from receiving life-saving drugs. As a preliminary demonstration to mitigate all these challenges, at MIT we have developed active pharmaceutical ingredients manufacturing in a miniature platform.
View Article and Find Full Text PDFPolymyxins B and E (i.e., colistin) are a family of naturally occurring lipopeptide antibiotics that are our last line of defense against multidrug resistant (MDR) Gram-negative pathogens.
View Article and Find Full Text PDFNovel combination therapies are desperately needed for combating lung infections caused by bacterial "superbugs". This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with the cystic fibrosis (CF) drugs KALYDECO (ivacaftor) and ORKAMBI (ivacaftor + lumacaftor) against Gram-negative pathogens that commonly colonize the CF lung, in particular, the problematic Pseudomonas aeruginosa. The in vitro synergistic activity of polymyxin B combined with ivacaftor or lumacaftor was assessed using checkerboard and static time-kill assays against a panel of polymyxin-susceptible and polymyxin-resistant P.
View Article and Find Full Text PDFPolymyxin B and colistin are currently used as a 'last-line' treatment for multidrug-resistant Gram-negative bacteria. However very little is known about the pharmacological differences between polymyxin B, polymyxin B, colistin A, colistin B, the major cyclic lipopeptides components present in polymyxin B and colistin products. Here, we report on the and antimicrobial activity and toxicity of these major lipopeptide components.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2015
Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells.
View Article and Find Full Text PDFIvacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2015
Identifying the pathways involved in the apoptotic cell death that is associated with polymyxin-induced nephrotoxicity is crucial for the development of strategies to ameliorate this dose-limiting side effect and for the development of novel safer polymyxins. The primary aim of this study was to identify the major pathways which lead to polymyxin-induced apoptosis in cultured rat kidney proximal tubular cells (NRK-52E). Caspase-3, -8, and -9 were activated by polymyxin B treatment in a concentration-dependent manner.
View Article and Find Full Text PDFPolymyxin is the last-line therapy against Gram-negative 'superbugs'; however, dose-limiting nephrotoxicity can occur in up to 60% of patients after intravenous administration. Understanding the accumulation and concentration of polymyxin within renal tubular cells is essential for the development of novel strategies to ameliorate its nephrotoxicity and to develop safer, new polymyxins. We designed and synthesized a novel dual-modality iodine-labeled fluorescent probe for quantitative mapping of polymyxin in kidney proximal tubular cells.
View Article and Find Full Text PDFObjectives: Dose-limiting nephrotoxicity remains the Achilles' heel of polymyxin B and polymyxin E (also known as colistin), which are important last-line antibiotics used against infections caused by MDR Gram-negative 'superbugs'. An understanding of the mechanisms of nephrotoxicity, including renal tissue distribution, is crucial for the development of safer polymyxin lipopeptide antibiotics. This is the first study to visualize the kidney distribution of polymyxin B using a mouse nephrotoxicity model and in situ immunostaining of kidney sections.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2014
The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative 'superbugs' has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2014
A major challenge in achieving size stability for relatively high concentration of fine particles from poorly water-soluble drug fenofibrate (FNB) is addressed through T-mixing based liquid antisolvent precipitation in the presence of ultrasonication and judicious use of stabilizers. Multiple stabilizers were screened in a batch mode prior to their continuous formation via T-mixing. In both cases, the stable suspensions maintained their size after 2 days of storage at room temperature, with the smallest particle size of d50: ∼1.
View Article and Find Full Text PDFThis study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2013
The nephrotoxicity of polymyxins is a major dose-limiting factor for treatment of infections caused by multidrug-resistant Gram-negative pathogens. The mechanism(s) of polymyxin-induced nephrotoxicity is not clear. This study aimed to investigate polymyxin B-induced apoptosis in kidney proximal tubular cells.
View Article and Find Full Text PDFThe ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Pseudomonas aeruginosa, and Serratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR).
View Article and Find Full Text PDFThis study utilizes sensitive, modern isothermal titration calorimetric methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α-1-acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug-AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine, all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug-binding thermodynamics was characterized.
View Article and Find Full Text PDFThe impact of under-acylation of lipid A on the interaction between Klebsiella pneumoniae LPS and polymyxins B and E was examined with fluorometric and calorimetric methods, and by (1)H NMR, using a paired wild type (WT) and the ΔlpxM mutant strains B5055 and B5055ΔlpxM, which predominantly express LPS with hexa- and penta-acylated lipid A structures respectively. LPS from B5055ΔlpxM displayed a fourfold increased binding affinity for polymyxins B and E compared with the B5055 WT LPS. EC50 values were consistent with polymyxin minimum inhibitory concentration (MIC) values for each strain.
View Article and Find Full Text PDF