Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intraventricular flow patterns during left ventricular assist device support have been investigated via computational fluid dynamics by several groups. Based on such simulations, specific parameters for thrombus formation risk analysis have been developed. However, computational fluid dynamic simulations of complex flow configurations require proper validation by experiments. To meet this need, a ventricular model with a well-defined inflow section was analyzed by particle image velocimetry and replicated by transient computational fluid dynamic simulations. To cover the laminar, transitional, and turbulent flow regime, four numerical methods including the laminar, standard k-omega, shear-stress transport, and renormalized group k-epsilon were applied and compared to the particle image velocimetry results in 46 different planes in the whole left ventricle. The simulated flow patterns for all methods, except renormalized group k-epsilon, were comparable to the flow patterns measured using particle image velocimetry (absolute error over whole left ventricle: laminar: 10.5, standard k-omega: 11.3, shear-stress transport: 11.3, and renormalized group k-epsilon: 17.8 mm/s). Intraventricular flow fields were simulated using four numerical methods and validated with experimental particle image velocimetry results. In the given setting and for the chosen boundary conditions, the laminar, standard K-omega, and shear-stress transport methods showed acceptable similarity to experimental particle image velocimetry data, with the laminar model showing the best transient behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780364PMC
http://dx.doi.org/10.1177/0391398820904056DOI Listing

Publication Analysis

Top Keywords

particle image
20
image velocimetry
20
flow patterns
16
computational fluid
12
standard k-omega
12
shear-stress transport
12
renormalized group
12
group k-epsilon
12
patterns left
8
left ventricular
8

Similar Publications

Computational modeling for PPE filtration: Informed by material characterization, microbial penetration, and particle mechanics.

J Occup Environ Hyg

September 2025

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.

This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.

View Article and Find Full Text PDF

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

Flexible, Transparent, and Microfluidic-Compatible Wafer-Scale Metamaterial Sheets for Dual SEF and SERS Sensing.

ACS Appl Mater Interfaces

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.

View Article and Find Full Text PDF

Objectives: The study aimed to combine instant-release and mini-tablet methodologies to develop novel orally disintegrating mini-tablets (ODMTs) for a frequently pescribed antibiotic, cefixime trihydrate (CT), in paediatric patients.

Materials And Methods: CT-loaded microcapsules were prepared using Eudragit EPO and Hydroxy Propyl Methyl Cellulose E50 by spray drying technique. The optimized microcapsules were mixed with co-processed ready-to-use tableting excipients, Ludiflash and Pearlitol 200SD, in different proportions and then compressed into ODMTs and evaluated.

View Article and Find Full Text PDF

Grafting of Resveratrol-Chitosan Nanoparticles as a Promising Radiosensitizer and Protector in DMBA-Induced Breast Cancer in Mice.

Curr Cancer Drug Targets

September 2025

Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt.

Introduction: Breast cancer is the most common malignancy among women and the second leading cause of cancer-related deaths worldwide. Resveratrol, a polyphenolic stilbene derivative found in grapes, red wine, and other plants, possesses anti-cancer properties. Various studies have reported the potential of different nanomaterials to act as radiosensitizers against tumor cells.

View Article and Find Full Text PDF