Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Profound metabolic changes are characteristic of macrophages during classical activation and have been implicated in this phenotype. Here we demonstrate that nitric oxide (NO) produced by murine macrophages is responsible for TCA cycle alterations and citrate accumulation associated with polarization. C tracing and mitochondrial respiration experiments map NO-mediated suppression of metabolism to mitochondrial aconitase (ACO2). Moreover, we find that inflammatory macrophages reroute pyruvate away from pyruvate dehydrogenase (PDH) in an NO-dependent and hypoxia-inducible factor 1α (Hif1α)-independent manner, thereby promoting glutamine-based anaplerosis. Ultimately, NO accumulation leads to suppression and loss of mitochondrial electron transport chain (ETC) complexes. Our data reveal that macrophages metabolic rewiring, in vitro and in vivo, is dependent on NO targeting specific pathways, resulting in reduced production of inflammatory mediators. Our findings require modification to current models of macrophage biology and demonstrate that reprogramming of metabolism should be considered a result rather than a mediator of inflammatory polarization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000728PMC
http://dx.doi.org/10.1038/s41467-020-14433-7DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
metabolic rewiring
8
pyruvate dehydrogenase
8
macrophages
5
oxide orchestrates
4
orchestrates metabolic
4
rewiring macrophages
4
macrophages targeting
4
targeting aconitase
4
aconitase pyruvate
4

Similar Publications

Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.

View Article and Find Full Text PDF

Sex differences in childhood atopic disease and the role of sex-steroid metabolites.

J Allergy Clin Immunol Pract

September 2025

COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Background: Studies have described sex differences in childhood asthma, allergy, and atopic dermatitis, but the development and clinical phenotype of these differences remain poorly understood.

Objective: To characterize sex differences in atopic disease throughout childhood and study the potential role of sex-steroid metabolites.

Methods: We examined sex differences in asthma, allergy, and atopic dermatitis using longitudinal generalized estimating equation models in the COPSAC (n=411) and COPSAC (n=700) birth cohorts.

View Article and Find Full Text PDF

Objective: To assess the production of nitric oxide and endothelin in off-pump coronary artery bypass grafting by comparing two techniques of internal thoracic artery preparation: skeletonized and pedicled without endothoracic fascia.

Methods: In this prospective, randomized clinical study, 40 patients undergoing off-pump coronary artery bypass grafting were randomized according to internal thoracic artery preparation technique into the skeletonized or pedicled (without endothoracic fascia) groups (n=20 each). Endothelial expression of CD31 was evaluated by means of immunohistochemistry and en-face immunofluorescence.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chronic inflammatory pain represents a significant global health burden, seriously affecting the patient's quality of life. Jin-Tian-Ge Capsules (JTG), a substitute for natural tiger bone, has been approved in China for the treatment of osteoporosis, osteoarthritis and rheumatoid arthritis. Clinical observations show that JTG can mitigate chronic pain associated with the above bone-related diseases.

View Article and Find Full Text PDF

Nitric oxide regulates phagocytosis through S-nitrosylation of Rab5.

J Biol Chem

September 2025

Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Moriokacho, Obu, Aichi, 474-8511, Japan; Department of dental hygiene, Ogaki women's college, 109-1 Nishinokawa-cho, Ogaki-city, Gifu, 503-8554, Japan. Electronic address:

Phagocytosis is mediated mainly by immune cells, such as macrophages, monocytes and neutrophils, that clear large pathogens including bacteria. The small GTP-binding protein Rab5 is crucial for both clathrin-dependent endocytosis and phagocytosis, but the role and mechanism of Rab5 activation during phagocytosis are poorly understood. Here we report that nitric oxide (NO), a novel regulator of Rab5, regulates phagocytosis through S-nitrosylation of Rab5.

View Article and Find Full Text PDF