Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Layered transition metal dichalcogenides offer many attractive features for next-generation low-dimensional device geometries. Due to the practical and fabrication challenges related to methods, the atomistic dynamics that give rise to realizable macroscopic device properties are often unclear. In this study, transmission electron microscopy techniques are utilized in order to understand the structural dynamics at play, especially at interfaces and defects, in the prototypical film of monolayer MoS under electrical bias. Through our sample fabrication process, we clearly identify the presence of mass transport in the presence of a lateral electric field. In particular, we observe that the voids present at grain boundaries combine to induce structural deformation. The electric field mediates a net vacancy flux from the grain boundary interior to the exposed surface edge sites that leaves molybdenum clusters in its wake. Following the initial biasing cycles, however, the mass flow is largely diminished and the resultant structure remains stable over repeated biasing. We believe insights from this work can help explain observations of nonuniform heating and preferential oxidation at grain boundary sites in these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b06581DOI Listing

Publication Analysis

Top Keywords

structural dynamics
8
transition metal
8
metal dichalcogenides
8
electric field
8
grain boundary
8
direct visualization
4
visualization electric-field-induced
4
electric-field-induced structural
4
dynamics monolayer
4
monolayer transition
4

Similar Publications

Temporal transcriptomics reveal crucial networks underlying jasmonate-mediated diurnal floret opening and closure in rice.

Sci China Life Sci

September 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.

View Article and Find Full Text PDF

Research conducted over the last 15 years indicates that cAMP is generated not just from the plasma membrane but also from intracellular compartments, particularly in endosomes, where receptors are redistributed during the endocytosis process. This review centers on the parathyroid hormone type 1 receptor (PTHR) as a model for a peptide hormone GPCRs that generates cAMP from various locations with distinct duration and pharmacological effectiveness. We discuss how structural dynamics simulations aid in designing ligands that induce cAMP location bias, ultimately answering how the spatiotemporal generation of cAMP affects pharmacological responses mediated by the PTHR.

View Article and Find Full Text PDF

The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.

View Article and Find Full Text PDF