Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Intrapartum-related hypoxic events are a major cause of morbidity and mortality in low resource countries. Neonates who receive proper resuscitation may go on to live otherwise healthy lives. However, even when a birth attendant is present, these babies frequently receive suboptimal ventilation with poor outcomes. The Augmented Infant Resuscitator (AIR) is a low-cost, reusable device designed to provide birth attendants real-time objective feedback on measures of ventilation quality during resuscitations and is intended for use in training and at the point of care. The goal of our study was to determine the impact and cost-effectiveness of AIR deployment in conjunction with existing resuscitation training programs in low resource settings.

Methods: We developed a simulation model of the natural history of intrapartum-related neonatal hypoxia and resuscitation deriving parameters from published literature and model calibration. Simulations estimated the number of disability-adjusted life years (DALYs) averted with use of the AIR by birth attendants if deployed at the point of care. Potential decreases in neonatal mortality and long-term subsequent morbidity from disability were modeled over a lifetime horizon. The primary outcome for the analysis was the cost per DALY averted. Model parameters were specific to the Mbeya region of Tanzania.

Results: Implementation of the AIR strategy resulted in an additional cost of $24.44 (4.80, 73.62) per DALY averted on top of the cost of existing, validated resuscitation programs. Per hospital, this adds an extra $656 to initial training costs and averts approximately 26.84 years of disability in the cohort of children born in the first year, when projected over a lifetime. The findings were robust to sensitivity analyses. Total roll-out costs for AIR are estimated at $422,688 for the Mbeya region, averting approximately 9018 DALYs on top of existing resuscitation programs, which are estimated to cost $202,240 without AIR.

Conclusion: Our modeling analysis finds that use of the AIR device may be both an effective and cost-effective tool when used as a supplement to existing resuscitation training programs. Implementation of this strategy in multiple settings will provide data to improve our model parameters and potentially confirm our findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993372PMC
http://dx.doi.org/10.1186/s12887-020-1925-5DOI Listing

Publication Analysis

Top Keywords

existing resuscitation
12
low resource
8
birth attendants
8
point care
8
resuscitation training
8
training programs
8
daly averted
8
model parameters
8
mbeya region
8
resuscitation programs
8

Similar Publications

Background: Cardiopulmonary resuscitation (CPR) is a vital intervention for managing cardiac arrest; however, enhancing survival rates remains a significant challenge. Recent advancements highlight the importance of integrating artificial intelligence (AI) to overcome existing limitations in prediction, intervention, and post-resuscitation care.

Methods: A thorough review of contemporary literature regarding AI applications in CPR was undertaken, explicitly examining its role in the early prediction of cardiac arrest, optimization of CPR quality, and enhancement of post-arrest outcomes.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Crush syndrome remains a life-threatening complication of traumatic injuries, especially in mass casualty and disaster scenarios. This systematic review evaluates the current clinical and mechanistic understanding of crush-related pathophysiology, anatomical impact, and renal complications, with a focus on therapeutic interventions. Studies were selected using the PICO framework and analyzed under PRISMA guidelines.

View Article and Find Full Text PDF

Background: Limited evidence exists on the additive risk of bradycardia in children with respiratory syncytial virus (RSV) bronchiolitis receiving dexmedetomidine (DMED). We aim to study the association between RSV bronchiolitis and bradycardia during DMED administration.

Methods: This retrospective cohort study included 273 children under 2 years old admitted to the intensive care units at Boston Children's Hospital with severe bronchiolitis and sedated with DMED from 2009 to 2022.

View Article and Find Full Text PDF

Background: Carotid blowout syndrome (CBS) is a life-threatening emergency involving the rupture of the carotid arteries and/or branches, often following surgery and radiotherapy for head and neck cancer. Our case series aimed to describe airway management strategies, endovascular and surgical approaches, perioperative resuscitation management, and clinical outcomes in a cohort of patients with CBS at a tertiary referral academic health center.

Methods: We retrospectively identified patients presenting with CBS between 2017 and 2021.

View Article and Find Full Text PDF