A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@cnt+hybrid&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A three-dimensional porous CoSnS@CNT nanoarchitecture as a highly efficient bifunctional catalyst for boosted OER performance and photocatalytic degradation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is urgent and significant to develop competent, inexpensive transition metal-based catalysts with multifunctional catalytic properties for wide applications. To meet this requirement, herein, for the first time, we present a novel bifunctional CoSnS@CNT hybrid via a simple one-pot surfactant-free hydrothermal method. The CoSnS@CNT hybrid has a unique three-dimensional (3D) porous nanoarchitecture, which is constructed by ultrathin CoSnS homogenously and compactly anchored on a highly conductive CNT skeleton. The porous nanoarchitecture of CoSnS@CNT provides abundant catalytic sites and facilitates ion diffusion, and the CNT skeleton accelerates electron transfer. Benefitting from these merits, the CoSnS@CNT hybrid acted as a bifunctional catalyst with boosted electrocatalytic and photocatalytic performance, where it delivered a tremendous oxygen evolution reaction (OER) performance with a low overpotential of 330 mV at a current density of 10 mA cm and excellent outstanding stability. Moreover, it showed 91.72% photocatalytic degradation for Rhodamine B dye, which is 2-times higher than that of bare CoSnS. This study presents a systematic approach to judiciously design nanostructures and simply synthesize non-noble metal-based bifunctional catalysts with boosted electrocatalytic and photocatalytic activities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr09588hDOI Listing

Publication Analysis

Top Keywords

cosns@cnt hybrid
12
three-dimensional porous
8
bifunctional catalyst
8
catalyst boosted
8
oer performance
8
photocatalytic degradation
8
porous nanoarchitecture
8
cnt skeleton
8
boosted electrocatalytic
8
electrocatalytic photocatalytic
8

Similar Publications