Severity: Warning
Message: file_get_contents(https://...@cnt+hybrid&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
It is urgent and significant to develop competent, inexpensive transition metal-based catalysts with multifunctional catalytic properties for wide applications. To meet this requirement, herein, for the first time, we present a novel bifunctional CoSnS@CNT hybrid via a simple one-pot surfactant-free hydrothermal method. The CoSnS@CNT hybrid has a unique three-dimensional (3D) porous nanoarchitecture, which is constructed by ultrathin CoSnS homogenously and compactly anchored on a highly conductive CNT skeleton. The porous nanoarchitecture of CoSnS@CNT provides abundant catalytic sites and facilitates ion diffusion, and the CNT skeleton accelerates electron transfer. Benefitting from these merits, the CoSnS@CNT hybrid acted as a bifunctional catalyst with boosted electrocatalytic and photocatalytic performance, where it delivered a tremendous oxygen evolution reaction (OER) performance with a low overpotential of 330 mV at a current density of 10 mA cm and excellent outstanding stability. Moreover, it showed 91.72% photocatalytic degradation for Rhodamine B dye, which is 2-times higher than that of bare CoSnS. This study presents a systematic approach to judiciously design nanostructures and simply synthesize non-noble metal-based bifunctional catalysts with boosted electrocatalytic and photocatalytic activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr09588h | DOI Listing |