98%
921
2 minutes
20
Purpose: Obese children may often present with advanced bone age. We aimed to evaluate the correlation between factors associated with childhood obesity and advanced bone age.
Methods: We enrolled 232 overweight or obese children. Anthropometric and laboratory data, and the degree of nonalcoholic fatty liver disease (NAFLD) were measured. We analyzed factors associated with advanced bone age by measuring the differences between bone and chronological ages.
Results: The normal and advanced bone age groups were comprised of 183 (78.9%) and 49 (21.1%) children, respectively. The prevalence of advanced bone age significantly increased as the percentiles of height, weight, waist circumference, and body mass index (BMI) increased. BMI z-score was higher in the advanced bone age group than in the normal bone age group (2.43±0.52 vs. 2.10±0.46; <0.001). The levels of insulin (27.80±26.13 μU/mL vs. 18.65±12.33 μU/mL; =0.034) and homeostatic model assessment-insulin resistance (6.56±6.18 vs. 4.43±2.93; =0.037) were significantly higher, while high density lipoprotein-cholesterol levels were lower (43.88±9.98 mg/dL vs. 48.95±10.50 mg/dL; =0.005) in the advanced bone age group compared to those in the normal bone age group, respectively. The prevalence of advanced bone age was higher in obese children with metabolic syndrome than in those without (28.2% vs. 14.7%; =0.016). The prevalence of advanced bone age was higher in obese children with a more severe degree of NAFLD.
Conclusion: Advanced bone age is associated with a severe degree of obesity and its complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966218 | PMC |
http://dx.doi.org/10.5223/pghn.2020.23.1.89 | DOI Listing |
Tissue Eng Regen Med
September 2025
Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.
Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.
View Article and Find Full Text PDFOsteoporos Int
September 2025
Department of Rheumatology, First Faculty of Medicine, Charles University, Katerinska 32, Prague, 121 08, Czech Republic.
Unlabelled: REMS-BMD by radiofrequency echographic multispectrometry is primarily determined by a patient's BMI, age, and sex. Only about 2.8% of the changes in femoral neck REMS-BMD can be attributed to replacement of the total hip with metal implants.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.
View Article and Find Full Text PDFChemSusChem
September 2025
Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany.
This article presents an advanced iteration of the polyoxometalate (POM)-Ionosolv concept to generate biobased methyl formate in high yield and a bleached cellulose pulp from lignocellulosic biomass in a single-step operation by using redox-balanced POM catalysts and molecular oxygen in alcoholic ionic liquid (IL) mixtures. The performance of the three Ionosolv-ILs triethylammonium hydrogen sulfate ([TEA][HSO]), N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), and tributylmethylphosphonium methyl sulfate ([TBMP][MeSO]), mixed with methanol (MeOH) (30/70 wt%), is evaluated by methyl formate yield from extracted hemicellulose and lignin as well as purity of the bleached cellulose pulp in the presence of various Keggin-type POMs. The redox-balanced HPVMnMoO POM catalyst in [TBMP][MeSO]/MeOH emerge as the most effective combination, achieving 20% methyl formate yield from commercial beech wood.
View Article and Find Full Text PDFRegen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDF