Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elevated replication stress is evident at telomeres of about 10-15% of cancer cells, which maintain their telomeres via a homologous recombination (HR)-based mechanism, referred to as alternative lengthening of telomeres (ALT). How ALT cells resolve replication stress to support their growth remains incompletely characterized. Here, we report that CSB (also known as ERCC6) promotes recruitment of HR repair proteins (MRN, BRCA1, BLM and RPA32) and POLD3 to ALT telomeres, a process that requires the ATPase activity of CSB and is controlled by ATM- and CDK2-dependent phosphorylation. Loss of CSB stimulates telomeric recruitment of MUS81 and SLX4, components of the structure-specific MUS81-EME1-SLX1-SLX4 (MUS-SLX) endonuclease complex, suggesting that CSB restricts MUS-SLX-mediated processing of stalled forks at ALT telomeres. Loss of CSB coupled with depletion of SMARCAL1, a chromatin remodeler implicated in catalyzing regression of stalled forks, synergistically promotes not only telomeric recruitment of MUS81 but also the formation of fragile telomeres, the latter of which is reported to arise from fork stalling. These results altogether suggest that CSB-mediated HR repair and SMARCAL1-mediated fork regression cooperate to prevent stalled forks from being processed into fragile telomeres in ALT cells.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.234914DOI Listing

Publication Analysis

Top Keywords

alt cells
12
stalled forks
12
replication stress
8
telomeres alt
8
alt telomeres
8
loss csb
8
telomeric recruitment
8
recruitment mus81
8
fragile telomeres
8
telomeres
7

Similar Publications

Enantioselective hepatotoxicity of rac- epoxiconazole and epoxiconazole enantiomers in lizards (Eremias argus).

J Hazard Mater

September 2025

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China. Electronic address:

Epoxiconazole (EPX) is widely applied to control various fungal diseases in crops. However, the toxicological effects of EPX on reptiles remain unknown, especially at the enantiomer level. In this study, lizards were repeatedly exposed to rac-EPX, (+)-EPX, and (-)-EPX at doses of 10 and 100 mg/kg bw for 21 days.

View Article and Find Full Text PDF

Epitalon increases telomere length in human cell lines through telomerase upregulation or ALT activity.

Biogerontology

September 2025

Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.

Epitalon, a naturally occurring tetrapeptide, is known for its anti-aging effects on mammalian cells. This happens through the induction of telomerase enzyme activity, resulting in the extension of telomere length. A strong link exists between telomere length and aging-related diseases.

View Article and Find Full Text PDF

Background And Aim: Although Kasai surgery has saved many patients with biliary atresia, the long-term survival rate remains low. Recently, cell therapy has been explored as a potential strategy to improve post-surgical survival. This study aims to evaluate the safety and outcomes of allogeneic umbilical cord mesenchymal stem cell (UC-MSC) infusion in management of liver cirrhosis due to Biliary Atresia after Kasai Operation.

View Article and Find Full Text PDF

Please confirm that the below Frontiers AI generated Alt-Text is an accurate visual description of your Figure(s). These Figure Alt-text proposals won't replace your figure captions and will not be visible on your article. If you wish to make any changes, kindly provide the exact revised Alt-Text you would like to use, ensuring that the word-count remains at approximately 100 words for best accessibility results.

View Article and Find Full Text PDF

Telomerase plays an important role in sustaining eukaryotic linear chromosomes, as elongation of telomeres is needed to counterbalance the shortening occurring in each replication round. Nevertheless, in telomerase-deficient cells, Alternative Lengthening of Telomeres (ALT) pathways can maintain telomeres by employing recombination-based mechanisms. In the budding yeast Naumovozyma castellii, effective activation of the ALT pathway leads to bypass of senescence and supports long-term growth.

View Article and Find Full Text PDF