98%
921
2 minutes
20
Humidifier-disinfectant-induced lung injury is a new syndrome associated with a high mortality rate and characterized by severe hypersensitivity pneumonitis, acute interstitial pneumonia, or acute respiratory distress syndrome. Polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent, is a major component associated with severe lung injury. In-depth studies are needed to determine how PHMG-P affects pathogenesis at the molecular level. Therefore, in this study, we analyzed short-term (4 weeks) and long-term (10 weeks) PHMG-P-exposure-specific gene-expression patterns in rats to improve our understanding of time-dependent changes in fibrosis. Gene-expression profiles were analyzed in rat lung tissues using DNA microarrays and bioinformatics tools. Clustering analysis of gene-expression data showed different gene-alteration patterns in the short- and long-term exposure groups and higher sensitivity to gene-expression changes in the long-term exposure group than in the short-term exposure group. Supervised analysis revealed 34 short-term and 335 long-term exposure-specific genes, and functional analysis revealed that short-term exposure-specific genes were involved in PHMG-P-induced initial inflammatory responses, whereas long-term exposure-specific genes were involved in PHMG-P-related induction of chronic lung fibrosis. The results of transcriptomic analysis were consistent with lung histopathology results. These findings indicated that exposure-time-specific changes in gene expression closely reflected time-dependent pathological changes in PHMG-P-induced lung injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08958378.2019.1707912 | DOI Listing |
Lung
September 2025
Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.
View Article and Find Full Text PDFPediatr Crit Care Med
September 2025
Waisman Brain Imaging Laboratory, University of Wisconsin, Madison, WI.
Objectives: Elevated intracranial pressure (ICP) is a complication of severe traumatic brain injury (TBI) that carries a risk of secondary brain injury. This study investigated the association between ICP burden and brain injury patterns on MRI in children with severe TBI.
Design, Setting, And Patients: Secondary analysis of the Approaches and Decisions in Acute Pediatric TBI (ADAPT) study, which included children with severe TBI (Glasgow Coma Scale score < 9) who received a clinical MRI within 30 days of injury.
Kaohsiung J Med Sci
September 2025
Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China.
Traumatic brain injury (TBI) causes a high level of blood glutamate, which triggers host defense by activating oxidative stress and inflammation response. However, the concrete mechanism underlying its exacerbating effects on acute lung injury (ALI) severity remains unknown. In the present study, we aim to demonstrate the special role of N-methyl-D-aspartate receptor (NMDAR) in regulating glutamate-related inflammation signaling to facilitate the sustaining injury.
View Article and Find Full Text PDFCrit Care Explor
September 2025
Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.
Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.
View Article and Find Full Text PDFEnviron Int
September 2025
Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:
Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.
View Article and Find Full Text PDF