Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Here, we report the synthesis of three-dimensional (3D) polycaprolactone (PCL) nanofiber incorporated with core-satellite platinum nanoparticles (PtNPs, 2-3 nm) coated gold nanospheres (AuNPs, 30 nm) via the simple lactic acid assisted self-assembly electrospinning technique. The Pt-AuNPs nanoparticle in core-satellite form has been prepared by following solution based methods and characterized with TEM, HR-TEM, UV-Visible, and XRD spectroscopic techniques. The surface morphology and structural analysis of 3D nanofiber scaffolds have been performed with FTIR, TGA, FESEM, and HR-TEM analysis techniques and shown the successful preparation of 3D electrospun fibrous structure composed of Pt-AuNPs loaded PCL (PCL@Pt-AuNPs) as a potential biomaterial for bone tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2020.17563 | DOI Listing |