98%
921
2 minutes
20
Psoriasis is an autoinflammatory/autoimmune skin disease and the epitome of an exaggerated primary inflammatory response in the surface barrier tissue. Despite the efficacy of dimethyl fumarate, an electrophilic drug for psoriasis management, there is a paucity of mechanistic evidence in vivo. In response to electrophiles, the Kelch-like erythroid cell-derived protein with cap-n-collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) system mediates a myriad of cytoprotective mechanisms, including the regulation of excessive inflammatory response and epidermal differentiation. Because the psoriasiform tissue reaction comprises neutrophil infiltration and parakeratotic scaling, it is hypothesized that Nrf2 not only regulates inflammatory responses but also maintains epidermal differentiation, a hallmark of epidermal homeostasis. By using the imiquimod-induced cutaneous inflammation model, an exaggerated inflammatory response and impaired epidermal differentiation in Nrf2 mice was detected. Dimethyl fumarate treatment in Nrf2 mice attenuated a psoriasiform tissue reaction and rescued epidermal differentiation, which was not observed in Nrf2 mice. In accordance with the fact that psoriasis plaques form well-demarcated parakeratotic lesions in association with the psoriasiform tissue reaction, the lesional skin showed reduced expression levels of NRF2 and its downstream target genes compared with nonlesional skin. In conclusion, Nrf2 attenuates the psoriasiform tissue reaction and underscores the mechanistic legitimacy of the electrophile-based approach for the management of psoriasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2019.10.022 | DOI Listing |
Plant Cell Environ
September 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Scienc
Receptor-like kinases (RLKs) play essential roles in plant growth and development. CRINKLY4 (CR4), one of the first reported RLKs in plants, is a well-known regulator of epidermal cell differentiation during leaf and seed development in maize. Within the last four decades, the functional landscape of CR4 has emerged across diverse developmental contexts and species, including dicots (e.
View Article and Find Full Text PDFReprod Toxicol
September 2025
Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea. Electronic address:
Xenopus embryo serves as an ideal model for teratogenesis assays to observe the effects of any compounds on the cellular processes crucial for early development and adult tissue homeostasis. In our screening of a chemical library with frog embryo, caffeic acid phenethyl ester (CAPE) was found to upregulate the FGF/MAPK pathway, disrupting germ layer formation in early development. Exposure to CAPE interfered with the formation of anterior-posterior body axis and of ectodermal derivatives such as eyes, dorsal fin and pigment cells.
View Article and Find Full Text PDFAnn Plast Surg
September 2025
Division of Onco-pathology, Department of Pathology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
Background: Ulceroproliferative lesions involving the eyelids can be due to several causes, chief among them being squamous cell carcinoma (SCC). It is imperative to distinguish it from various mimics owing to the limited surgical therapy that can be offered at the site. Inverted follicular keratosis (IFK) is a rare benign epidermal tumor that arises from the infundibular portion of the hair follicle.
View Article and Find Full Text PDFPlant J
September 2025
Biological Information Processing Group, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
The decoding of calcium signals by plant calcium-dependent kinases (CPKs) is not fully understood yet. Based on kinetic in vitro measurements of the activity of several CPK proteins, their individual activity profile was modeled and coupled to cytosolic calcium concentration changes from in vivo measurements of guard cells and epidermal leaf cells. In addition, computationally produced surrogate data were used.
View Article and Find Full Text PDFBr J Dermatol
September 2025
Dermatology Hospital of Shandong First Medical University, Jinan, China.