98%
921
2 minutes
20
Scope: Polyphenol-enriched herbal extracts have been proved as alternative therapeutic strategies for experimentally induced colitis. The in vivo and in vitro anti-inflammatory effects of Camellia sinensis (green, white, yellow, oolong, black, and dark tea) and Litsea coreana (hawk tea) are comparatively explored.
Methods And Results: HPLC analysis confirms dissimilarities among phytochemical compositions of these teas. The tea extracts (TEs) significantly decrease the production of pro-inflammatory cytokines (IL-6, IL-12, and tumor necrosis factor-α) and increase the anti-inflammatory cytokines (IL-10) in LPS-stimulated RAW 264.7 macrophages and a dextran sodium sulfate (DSS)-induced colitis mouse model. The treatment of TEs in colitis mice can ameliorate colon inflammation, pro-oxidative enzyme activity, colon integrity, and suppress the activation of nuclear factor-κB. Of note, green TE significantly attenuates the DSS-induced decrease in richness and diversity of gut microbiota. Moreover, TEs are capable of exerting a prebiotic effect on gut microbiota by increasing the abundance of potentially beneficial bacteria (e.g., Faecalibaculum, and Bifidobacterium), and decreasing the abundance of potentially harmful bacteria (e.g., Bacteroids, and Mucispirillum). TEs restore the decreased production of SCFAs in the feces of colitic mice.
Conclusion: The treatment of seven types of tea can alleviate DSS-induced colitis in mice, and modulate the dysbiosis of gut microbiota in colitis mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201900943 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.
View Article and Find Full Text PDFGut Microbes
December 2025
Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.
Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.
View Article and Find Full Text PDFFood Funct
September 2025
Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
International Joint Center, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
Despite undisputed success of orthopaedic procedures, surgical site infections (SSI) such as periprosthetic joint infection (PJI) continues to compromise the outcome and result in major clinical and economic burden. The overall rate of infection is expected to rise in the future resulting in significant associated mortality and morbidity. Traditional concepts have largely attributed the source of PJI to exogenous pathogens.
View Article and Find Full Text PDF