Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study was performed to identify genes related to acquired trastuzumab resistance in gastric cancer (GC) and to analyze their prognostic value.

Methods: The gene expression profile GSE77346 was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were obtained by using GEO2R. Functional and pathway enrichment was analyzed by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, and MCODE were then used to construct the protein-protein interaction (PPI) network and identify hub genes. Finally, the relationship between hub genes and overall survival (OS) was analyzed by using the online Kaplan-Meier plotter tool.

Results: A total of 327 DEGs were screened and were mainly enriched in terms related to pathways in cancer, signaling pathways regulating stem cell pluripotency, HTLV-I infection, and ECM-receptor interactions. A PPI network was constructed, and 18 hub genes (including one upregulated gene and seventeen downregulated genes) were identified based on the degrees and MCODE scores of the PPI network. Finally, the expression of four hub genes (ERBB2, VIM, EGR1, and PSMB8) was found to be related to the prognosis of HER2-positive (HER2+) gastric cancer. However, the prognostic value of the other hub genes was controversial; interestingly, most of these genes were interferon- (IFN-) stimulated genes (ISGs).

Conclusions: Overall, we propose that the four hub genes may be potential targets in trastuzumab-resistant gastric cancer and that ISGs may play a key role in promoting trastuzumab resistance in GC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948351PMC
http://dx.doi.org/10.1155/2019/1372571DOI Listing

Publication Analysis

Top Keywords

hub genes
24
gastric cancer
16
genes
14
ppi network
12
trastuzumab-resistant gastric
8
trastuzumab resistance
8
gene expression
8
hub
6
cancer
5
bioinformatics analysis
4

Similar Publications

Background: Burn injuries trigger complex immune responses and gene expression changes, impacting wound healing and systemic inflammation. Understanding these changes is crucial for identifying biomarkers and therapeutic targets.

Methods: We analyzed two GEO datasets (wound tissue (GSE8056) and blood (GSE37069)) to identify differentially expressed genes (DEGs) in burn injury samples versus controls.

View Article and Find Full Text PDF

Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID-19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID-19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS), the leading stroke subtype (∼87%), arises from vascular occlusions, triggering brain necrosis through ischemia-reperfusion injury. Ferroptosis, an iron-driven cell death via Fe-mediated lipid peroxidation, is implicated in IS pathology. This study demonstrates that enoyl-coA hydrolase 1 (ECH1) may serve as a peripheral biomarker and therapeutic target for IS based on ferroptosis signaling.

View Article and Find Full Text PDF

Background: Acute and long-term mental health disorders correlate with coronavirus disease 2019 (COVID-19). The underlying mechanisms responsible for the coexistence of COVID-19 and depression remain unclear, and more research is needed to find hub genes and effective therapies. The main objective of this study was to evaluate gene-expression profiles and, identify key genes, and discovery potential therapeutic agents for co-occurrence in COVID-19 and major depressive disorder (MDD).

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is common and deadly, often leading to metastasis, challenging treatment, and poor outcomes. Understanding its molecular basis is crucial for developing effective therapies.

Aims: This study aimed to investigate the role of Myosin Heavy Chain 11 (MYH11) in CRC progression, especially its effects on epithelial-mesenchymal transition (EMT) and cell behavior, and to explore its potential regulation by the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1).

View Article and Find Full Text PDF