Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Coriolis Vibratory Gyroscopes are a type of sensors that measure angular velocities through the Coriolis effect. The resonator is the critical component of the CVGs, the vibrational characteristics of which, including the resonant frequency, frequency mismatch, Q factor, and Q factor asymmetry, have a great influence on the performance of CVG. The frequency mismatch and Q factor of the resonator, in particular, directly determine the precision and drift characteristics of the gyroscope. Although the frequency mismatch and Q factor are natural properties of the resonator, they can change with external conditions, such as temperature, pressure, and external forces. In this paper, the influence of electrostatic forces on the vibrational characteristics of the fused silica cylindrical resonator is investigated. Experiments were performed on a fused silica cylindrical resonator coated with Cr/Au films. It was shown that the resonant frequency, frequency mismatch, and the decay time slightly decreased with electrostatic forces, while the decay time split increased. Lower capacitive gaps and larger applied voltages resulted in lower frequency mismatch and lower decay time. This phenomenon was theoretically analyzed, and the variation trends of results were consistent with the theoretical analysis. This study indicates that, for fused silica cylindrical resonator with electrostatic transduction, the electrostatic influence on the Q factor and frequency, although small, should be considered when designing the capacitive gap and choosing bias voltages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982723PMC
http://dx.doi.org/10.3390/s20010295DOI Listing

Publication Analysis

Top Keywords

frequency mismatch
20
electrostatic forces
12
vibrational characteristics
12
mismatch factor
12
fused silica
12
silica cylindrical
12
cylindrical resonator
12
decay time
12
influence electrostatic
8
forces vibrational
8

Similar Publications

Introduction: Wave speed (WS) mapping, enabled by omnipolar technology, allows for real-time visualization of local conduction velocity (CV). Its utility in ventricular tachycardia (VT) ablation has not been fully characterized.

Methods And Results: We describe a case series of patients undergoing VT ablation in which WS mapping was applied alongside established techniques such as peak frequency (PF) mapping and isochronal late activation mapping (ILAM).

View Article and Find Full Text PDF

In this paper, a single-quartz-enhanced photoacoustic-photothermal dual spectroscopy sensor based on a spherical acoustic resonator (SAR) is reported for the first time. The dual spectroscopy of quartz-enhanced photoacoustic spectroscopy (QEPAS) and quartz-enhanced photothermal spectroscopy (QEPTS), utilizing a single quartz tuning fork (QTF), eliminates the frequency mismatch issue that occurs when multiple QTFs are used. The dual spectroscopy model was constructed using the finite element method, which provides numerical simulation support for subsequent experiments.

View Article and Find Full Text PDF

This article investigates the leader-following consensus of nonlinear TDMAS under impulsive control with simultaneous consideration of packet loss and parameter mismatch. Specifically, the inherent parameter mismatch between the leader's dynamics and followers' dynamics is explicitly addressed. To mitigate communication frequency, two novel impulsive control protocols are developed: 1) a pure impulsive scheme for theoretical analysis and 2) a limited impulsive strategy for practical implementation.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

Missing genotypes reduce statistical power and hinder genome-wide association studies. While reference-based methods are popular, they struggle in complex regions and under population mismatch. Existing reference-free deep learning models show promise in addressing this issue but often fail to impute rare variants in small datasets.

View Article and Find Full Text PDF