Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper reports on the development, characterization and in vivo validation of compact optical neural probes. These novel intracerebral devices comprise micro light-emitting diodes ( μLEDs) integrated along their slender probe shanks with up to 20  μLEDs per device. Blue light with a peak wavelength of 455 nm is emitted from circular apertures 100  μm in diameter. The μLEDs are structured on GaN-on-sapphire wafers and subsequently transferred onto silicon (Si) carrier wafers. The wafer-scale transfer process provides the opportunity to process the functional GaN layer stack from both sides and hence enables maximizing the efficiency of the μLEDs. Combined with standard MEMS fabrication processes for Si, linear μLED arrays with small inter- μLED distances are achieved on thin probe shanks with cross-sections measuring [Formula: see text]. Devices are interconnected using highly flexible polyimide cables in order to mechanically decouple them from the peripheral electronics during in vivo experiments. Assembled probes emit a peak optical radiant flux of 440  μW (emittance 56 mW mm ) at 5 mA driving current. Thermal characterization of test probes reveals a temperature increase of 1.5 K measured using an integrated thermistor. Electrical functionality stress tests have been carried out to evaluate the device passivation against the physiological environment. It is estimated to endure at least 48 h during continuously pulsed μLED operation. A compact driving circuitry enables low-noise μLED operation in in vivo optogenetic experiments. The radiant flux necessary to elicit an acceptable neuronal response is determined between 1.36  μW and 17.5  μW. Probe validation successfully demonstrates the layer-specific stimulation in the cortex in multiple in vivo trials.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2020.2966293DOI Listing

Publication Analysis

Top Keywords

compact optical
8
optical neural
8
neural probes
8
probe shanks
8
radiant flux
8
μled operation
8
μleds
5
probes
4
probes integrated
4
integrated thin-film
4

Similar Publications

Physicochemical, microbiological, and microstructural changes in germinated wheat grain.

PLoS One

September 2025

Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.

This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.

View Article and Find Full Text PDF

We report the design and in-orbit demonstration of a compact optical system for a 87Sr optical lattice clock aboard the Chinese Space Station. This system adopts a compact and robust vertically stacked architecture with a total volume of 0.11 m3 and a mass of 53.

View Article and Find Full Text PDF

A novel medium-current (up to 20 mA), low normalized beam emittance (<1 π mm mrad) electron cyclotron resonance microwave H+ ion source has been developed at the Center for Energy Research in Budapest, Hungary. This high-stability design targets an energy ripple below 1% while delivering a continuous or pulsed proton beam with adjustable pulse duration (0.1-10 ms) and frequency (0.

View Article and Find Full Text PDF

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

Adv Mater

September 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.

View Article and Find Full Text PDF

Densification-Related Optical and Photodetection Properties of Green-Synthesized MAPbI and MAPbI@Graphite Powders.

ACS Omega

September 2025

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.

For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.

View Article and Find Full Text PDF