Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next-generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells' injection. Work was focused on those altered prior to metastasis detection, among which were miR-802-5p and miR-194-5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR-802-5p and miR-194-5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053247PMC
http://dx.doi.org/10.1002/1878-0261.12632DOI Listing

Publication Analysis

Top Keywords

brain metastasis
20
breast cancer
16
metastasis development
12
brain
11
metastasis
9
downregulation circulating
8
cancer brain
8
circulating mirnas
8
mir-802-5p mir-194-5p
8
mef2c
5

Similar Publications

Wearable device-measured circadian rest-activity rhythm with mortality risk in patients with cancer.

BMJ Health Care Inform

September 2025

Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China

Objectives: The objectives were to examine the associations between accelerometer-measured circadian rest-activity rhythm (CRAR), the most prominent circadian rhythm in humans and the risk of mortality from all-cause, cancer and cardiovascular disease (CVD) in patients with cancer.

Methods: 7456 cancer participants from the UK Biobank were included. All participants wore accelerometers from 2013 to 2015 and were followed up until 24 January 2024, with a median follow-up of 9.

View Article and Find Full Text PDF

Intraoperative radiotherapy for resectable brain metastases: a systematic review and meta-analysis.

Radiother Oncol

September 2025

Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany; Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany. Electronic address:

Background: In recent years, intraoperative radiotherapy (IORT) with low-energy X-rays is emerging as an alternative to postoperative stereotactic radiotherapy (SRT) of the resection cavity in patients with resectable brain metastases (BMs).

Methods: We performed a systematic review of the MEDLINE, Embase, and Scopus databases, including all original articles on IORT for resectable BMs from 2015 to 2025. Data on safety, local control, and survival outcomes were collected.

View Article and Find Full Text PDF

Staged Gamma Knife radiosurgery for large brain metastases: Local control and the influence of systemic treatment.

Radiother Oncol

September 2025

Amsterdam UMC, Location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.

Background And Purpose: Staged Gamma Knife radiosurgery (SGKRS) delivers high-dose radiotherapy to large brain metastases (BM) in two or three fractions with a time interval of several weeks. Various systemic treatments have also demonstrated favorable intracranial responses. Therefore, the outcome of patients undergoing radiosurgery and systemic treatment for large BM is of high interest but unknown.

View Article and Find Full Text PDF

Perturbing neural stem cell fate in glioblastoma heterogeneity and beyond.

Stem Cell Reports

September 2025

Laboratory of Neural Stem Cells and Functional Neurogenetics, Farmington, CT 06030, USA; Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA. Electronic address:

Intratumoral heterogeneity in glioblastoma is thought to underlie its remarkable ability to recur and resist therapies. Its origins, however, remain unknown. In this issue, Liu et al.

View Article and Find Full Text PDF

CrossNeXt: ConvNeXt-based cross-teaching with entropy minimization for semi-supervised liver segmentation from abdominal MRI.

Comput Med Imaging Graph

August 2025

Academy for Engineering and Technology, Fudan University, Shanghai, 200433, People's Republic of China; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China; Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases,

Recent advancements in artificial intelligence have significantly enhanced the efficiency of abdominal MRI segmentation, thereby improving the screening and diagnosis of liver diseases. However, accurate precise liver segmentation in MRI remains a challenging task due to the high variability in liver morphology and the limited availability of high-quality annotated datasets. To address these challenges, this study presents an advanced semi-supervised learning framework that integrates cross-teaching with pseudo-label generation and intra-batch entropy minimization.

View Article and Find Full Text PDF