Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
High exposures of mammalian species to inorganic mercury (Hg) and methylmercury (MeHg) have been associated with adverse effects on behavior and reproduction. Different mammalian species exhibit varying responses to similar external exposure levels, reflecting potential differences in Hg toxicokinetics. Here, we use Hg stable isotopes, total Hg, MeHg and selenium (Se) concentrations measured in multiple tissues of North Atlantic pilot whales (Globicephala melas) to investigate processes affecting the distribution and accumulation of Hg and MeHg. We find that simple mixing of two distinct isotopic end-members: MeHg (1.4‰) and Hg (-1.6‰) can explain the observed variability of δHg in brain tissue. A similar isotopic composition for the MeHg end-member in the brain, muscle, heart, and kidney suggests efficient exchange of MeHg in blood throughout the body. By contrast, the Hg isotopic composition of the liver of adult whales is different from younger whales and other tissues that follow the two-end member mixing model. Measured Se:Hg ratios are lowest in adult whales with the highest levels of MeHg exposure. In these individuals, Se availability is likely reduced by complexation with demethylated Hg. We speculate that this results in a higher fraction of labile Hg eliminated from the liver of adult whales compared to young whales and subsequent redistribution to other tissues, potentially affecting toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.136325 | DOI Listing |