Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-cost methods for measuring airborne microparticles and nanoparticles (aerosols) have remained elusive despite the increasing concern of health impacts from ambient, urban, and indoor sources. While bipolar ion sources are common in smoke alarms, this work is the first to exploit the mean charge on an aerosol resulting from a bipolar charge equilibrium and establish experimentally its correlation to properties of the aerosol particle size distribution. The net current produced from this mean particle charge is demonstrated to be linearly proportional to the product of the mean particle diameter and total number concentration ( ∼ ) for two bipolar ion sources (Kr and Am). This conclusion is supported by simple equations derived from well-established bipolar charging theory. The theory predicts that the mean charge on the aerosol particles reaches an equilibrium, which, importantly, is independent of the concentration of charging ions. Furthermore, in situ measurements of a roadside aerosol demonstrate that the sensing method yields results in good agreement ( = 0.979) with existing portable and laboratory-grade aerosol instruments. The simplicity, stability, and cost of the bipolar ion source overcome challenges of other portable sensors, increasing the feasibility of widespread sensor deployment to monitor ultrafine particle characteristics, which are relevant to lung deposition and by extension, human health.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b02143DOI Listing

Publication Analysis

Top Keywords

bipolar ion
12
bipolar charge
8
charge equilibrium
8
ion sources
8
charge aerosol
8
bipolar
6
charge
5
aerosol
5
simple method
4
method measuring
4

Similar Publications

Controlling Chloride Crossover in Bipolar Membrane Water Electrolysis.

ACS Electrochem

September 2025

Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.

View Article and Find Full Text PDF

Radiation-induced single event effects in vertically prolonged drain dual gate Si Ge source TFET.

J Mol Model

September 2025

Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.

Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.

View Article and Find Full Text PDF

Association between antidiabetic drug targets and psychiatric disorders.

Schizophrenia (Heidelb)

August 2025

Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.

Psychiatric disorders present a significant global health burden with limited effective medications. Observing the widespread comorbidities between diabetes and psychiatric disorders, we explored the potential of repurposing antidiabetic drug targets for psychiatric treatments. We identified 32 target genes of 60 antidiabetics and performed Mendelian randomization analyses using expression and protein quantitative trait loci data from brain tissues alongside summary data for seven psychiatric disorders.

View Article and Find Full Text PDF