Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As a new type of porous material, metal-organic frameworks (MOFs) have been widely studied in gas adsorption and separation, especially in C hydrocarbons. Considering the stronger interaction between the unsaturated molecules and the metal sites, and the smaller molecular size of unsaturated molecules, the usual relationship of affinities and adsorption capacities among C hydrocarbons in most common MOFs is CH > CH > CH. Herein, a unique microporous metal-organic framework, (activated ), with a completely reversed adsorption relationship for C hydrocarbons (CH > CH > CH) has been successfully synthesized, which breaks the traditional concept of the adsorption relationship of MOFs for C hydrocarbons. Based on this unique adsorption relationship, a green and simple one-step separation purification for a large amount of CH can be expected to be achieved through the selective adsorption of CH. In addition, also shows good selectivities in CH/CO and CO/CH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b22410 | DOI Listing |