98%
921
2 minutes
20
To bridge the gap between preclinical cellular models of disease and imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions. Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046325 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1689-19.2019 | DOI Listing |
J Alzheimers Dis
September 2025
Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
Compared with more typical late-onset Alzheimer's disease (AD), the mechanisms of young-onset AD (YOAD; age of symptom onset <65 years) remain less understood. Using resting-state functional MRI data and dynamic causal modeling techniques, Sacu et al. demonstrate that individuals with YOAD (amnestic AD or posterior cortical atrophy) exhibit alterations in effective (i.
View Article and Find Full Text PDFCurr Neuropharmacol
August 2025
Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
Introduction: Frontotemporal dementia (FTD) is the third most frequent dementia and the leading dementia subtype in individuals under 65. The discovery of C9orf72 (chromosome 9 open reading frame 72) GGGGCC abnormal expansion is a major genetic cause of both FTD and amyotrophic lateral sclerosis (ALS), linking these diseases along a clinicopathological spectrum. This study aimed to depict the research landscape of C9orf72 in FTD over the past decade, track emerging research hotspots, and provide insights into under-researched areas.
View Article and Find Full Text PDFJ Neurosci
September 2025
Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).
View Article and Find Full Text PDFNeurology
September 2025
Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
Background And Objectives: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular health, and its signature in familial frontotemporal dementia (FTD) remains unknown. The primary aim was to investigate CVR in genetic FTD using an fMRI index of vascular contractility termed resting-state fluctuation amplitudes (RSFAs) and to assess whether RSFA differences are moderated by age. A secondary aim was to study the relationship between RSFA and cognition.
View Article and Find Full Text PDFComput Biol Med
September 2025
School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia.
Accurate differentiation of Alzheimer's disease (AD), frontotemporal dementia (FTD), and healthy control (HC) is critical for early diagnosis and intervention of brain disorders. This study introduces a deep learning framework that leverages electroencephalography (EEG)-derived multiband functional connectivity (FC) features. Multiband Morlet wavelet mutual information (MMMIFC) was utilized to generate high-resolution FC matrices across 1-20 Hz, which were subsequently processed by a 3D convolutional neural network (3D-CNN) based on a modified VGG architecture.
View Article and Find Full Text PDF