Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here we present a blood-brain barrier (BBB) model that enables high-resolution imaging of nanoparticle (NP) interactions with endothelial cells and the capture of rare NP translocation events. The enabling technology is an ultrathin silicon nitride (SiN) membrane (0.5 μm pore size, 20% porosity, 400 nm thickness) integrated into a dual-chamber platform that facilitates imaging at low working distances (∼50 μm). The platform, the μSiM-BBB (microfluidic silicon membrane-BBB), features human brain endothelial cells and primary astrocytes grown on opposite sides of the membrane. The human brain endothelial cells form tight junctions on the ultrathin membranes and exhibit a significantly higher resistance to FITC-dextran diffusion than commercial membranes. The enhanced optical properties of the SiN membrane allow high-resolution live-cell imaging of three types of NPs, namely, 40 nm PS-COOH, 100 nm PS-COOH, and apolipoprotein E-conjugated 100 nm SiO, interacting with the BBB. Despite the excellent barrier properties of the endothelial layer, we are able to document rare NP translocation events of NPs localized to lysosomal compartments of astrocytes on the "brain side" of the device. Although the translocation is always low, our data suggest that size and targeting ligand are important parameters for NP translocation across the BBB. As a platform that enables the detection of rare transmission across tight BBB layers, the μSiM-BBB is an important tool for the design of nanoparticle-based delivery of drugs to the central nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049097PMC
http://dx.doi.org/10.1021/acsnano.9b08870DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
ultrathin silicon
8
blood-brain barrier
8
rare translocation
8
translocation events
8
sin membrane
8
human brain
8
brain endothelial
8
translocation
5
silicon membranes
4

Similar Publications

Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.

Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.

View Article and Find Full Text PDF

Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.

Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).

View Article and Find Full Text PDF

Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.

View Article and Find Full Text PDF

Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.

Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).

View Article and Find Full Text PDF

Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.

View Article and Find Full Text PDF