A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Substantially Improving Device Performance of All-Inorganic Perovskite-Based Phototransistors via Indium Tin Oxide Nanowire Incorporation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

All-inorganic halide perovskites (IHPs) have attracted enormous attention due to their intrinsically high optical absorption coefficient and superior ambient stabilities. However, the photosensitivity of IHP-based photodetectors is still restricted by their poor conductivities. Here, a facile design of hybrid phototransistors based on the CsPbBr thin film and indium tin oxide (ITO) nanowires (NWs) integrated into a InGaZnO channel in order to achieve both high photoresponsivity and fast response is reported. The metallic ITO NWs are employed as electron pumps and expressways to efficiently extract photocarriers from CsPbBr and inject electrons into InGaZnO. The obtained device exhibits the outstanding responsivity of 4.9 × 10 A W , which is about 100-fold better than the previous best results of CsPbBr -based photodetectors, together with the fast response (0.45/0.55 s), long-term stability (200 h in ambient), and excellent mechanical flexibility. By operating the phototransistor in the depletion regime, an ultrahigh specific detectivity up to 7.6 × 10 Jones is achieved. More importantly, the optimized spin-coating manufacturing process is highly beneficial for achieving uniform InGaZnO-ITO/perovskite hybrid films for high-performance flexible detector arrays. All these results can not only indicate the potential of these hybrid phototransistors but also provide a valuable insight into the design of hybrid material systems for high-performance photodetection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201905609DOI Listing

Publication Analysis

Top Keywords

indium tin
8
tin oxide
8
design hybrid
8
hybrid phototransistors
8
fast response
8
improving device
4
device performance
4
performance all-inorganic
4
all-inorganic perovskite-based
4
perovskite-based phototransistors
4

Similar Publications