Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Hypoxia-inducible factors (HIF)1 and 2 are transcription factors that regulate the homeostatic response to low oxygen conditions. Since data related to the importance of HIF1 and 2 in hematopoietic stem and progenitors is conflicting, we investigated the chromatin binding profiles of HIF1 and HIF2 and linked that to transcriptional networks and the cellular metabolic state.

Methods: Genome-wide ChIPseq and ChIP-PCR experiments were performed to identify HIF1 and HIF2 binding sites in human acute myeloid leukemia (AML) cells and healthy CD34 hematopoietic stem/progenitor cells. Transcriptome studies were performed to identify gene expression changes induced by hypoxia or by overexpression of oxygen-insensitive HIF1 and HIF2 mutants. Metabolism studies were performed by 1D-NMR, and glucose consumption and lactate production levels were determined by spectrophotometric enzyme assays. CRISPR-CAS9-mediated HIF1, HIF2, and ARNT lines were generated to study the functional consequences upon loss of HIF signaling, in vitro and in vivo upon transplantation of knockout lines in xenograft mice.

Results: Genome-wide ChIP-seq and transcriptome studies revealed that overlapping HIF1- and HIF2-controlled loci were highly enriched for various processes including metabolism, particularly glucose metabolism, but also for chromatin organization, cellular response to stress and G protein-coupled receptor signaling. ChIP-qPCR validation studies confirmed that glycolysis-related genes but not genes related to the TCA cycle or glutaminolysis were controlled by both HIF1 and HIF2 in leukemic cell lines and primary AMLs, while in healthy human CD34 cells these loci were predominantly controlled by HIF1 and not HIF2. However, and in contrast to our initial hypotheses, CRISPR/Cas9-mediated knockout of HIF signaling did not affect growth, internal metabolite concentrations, glucose consumption or lactate production under hypoxia, not even in vivo upon transplantation of knockout cells into xenograft mice.

Conclusion: These data indicate that, while HIFs exert control over glycolysis but not OxPHOS gene expression in human leukemic cells, this is not critically important for their metabolic state. In contrast, inhibition of BCR-ABL did impact on glucose consumption and lactate production regardless of the presence of HIFs. These data indicate that oncogene-mediated control over glycolysis can occur independently of hypoxic signaling modules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935105PMC
http://dx.doi.org/10.1186/s40170-019-0206-yDOI Listing

Publication Analysis

Top Keywords

hif1 hif2
24
gene expression
12
glucose consumption
12
consumption lactate
12
lactate production
12
human leukemic
8
stem/progenitor cells
8
hif1
8
performed identify
8
transcriptome studies
8

Similar Publications

Hypoxia-inducible factor (HIF) is a master regulator of cancer cell adaptation to tumor hypoxia and is involved in cancer progression. Single-cell (sc) differences in the HIF response allow for tumor evolution and cause therapy resistance. These sc-differences are usually ascribed to tumor microenvironmental differences and/or clonal (epi)genetic variability.

View Article and Find Full Text PDF

Oxidative stress and hypoxia lead to dysfunction of retinal pigment epithelium (RPE) cells and are hallmarks of diseases such as age-related macular degeneration (AMD), the most common blinding disease in the elderly population. We have previously shown that a combination of these two risk factors, i.e.

View Article and Find Full Text PDF

HIF-O-Glcnac Axis - Implications for Breast Cancer Metastasis.

Cell Physiol Biochem

June 2025

Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.

Background/aims: Hypoxia-inducible factor isoforms HIF1 and HIF2 are crucial in the hypoxia response but might also support cancer progression, including breast cancer. O-GlcNAcylation, a post-translational modification regulated by the OGT enzyme, is also emerging as a contributor to breast cancer malignancy. This study aimed to elucidate the role of HIF1 and HIF2 in breast cancer progression and their relationship to O-GlcNAcylation.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a leading cause of cancer-related death worldwide. Hypoxia, which is common in solid tumors, contributes to tumor progression. , also known as , is a key regulator of cellular responses to hypoxia and is implicated in carcinogenesis.

View Article and Find Full Text PDF

Hypoxia inducible factors (HIFs) are transcription factors that coordinate cellular responses to low oxygen levels, functioning as an α/β heterodimer which binds a short hypoxia response element (HRE) DNA sequence. Prior studies suggest HIF/HRE complexes are augmented by the binding of additional factors nearby, but those interactions are not well understood. Here, we integrated structural and biochemical approaches to investigate several functionally relevant HIF assemblies with other protein, small molecule, and DNA partners.

View Article and Find Full Text PDF