Publications by authors named "Joseph D Closson"

Hypoxia inducible factors (HIFs) are transcription factors that coordinate cellular responses to low oxygen levels, functioning as an α/β heterodimer which binds a short hypoxia response element (HRE) DNA sequence. Prior studies suggest HIF/HRE complexes are augmented by the binding of additional factors nearby, but those interactions are not well understood. Here, we integrated structural and biochemical approaches to investigate several functionally relevant HIF assemblies with other protein, small molecule, and DNA partners.

View Article and Find Full Text PDF

While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR.

View Article and Find Full Text PDF

Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways.

View Article and Find Full Text PDF