98%
921
2 minutes
20
Reactions of dinitrogen pentoxide (NO) greatly affect the concentrations of NO, ozone, OH radicals, methane, and more. In this work, we employ ab initio molecular dynamics and other tools of computational chemistry to explore reactions of NO with anions hydrated by 12 water molecules to shed light on this important class of reactions. The ions investigated are Cl, SO, ClO, and RCOO (R = H, CH, CH). The following main results are obtained: (i) all the reactions take place by an S2-type mechanism, with a transition state that involves a contact ion pair (NONO) that interacts strongly with water molecules. (ii) Reactions of a solvent-separated nitronium ion (NO) are not observed in any of the cases. (iii) An explanation is provided for the suppression of ClNO formation from NO reacting with salty water when sulfate or acetate ions are present, as found in recent experiments. (iv) Formation of novel intermediate species, such as (SONO) and RCOONO, in these reactions is predicted. The results suggest atomistic-level mechanisms for the reactions studied and may be useful for the development of improved modeling of reaction kinetics in aerosol particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b09095 | DOI Listing |
Scand J Med Sci Sports
September 2025
Department of Dermatology and Allergy Biederstein, School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany.
In wheat allergy dependent on augmentation factors (WALDA), allergic reactions occur when wheat ingestion is combined with exercise or rarely other augmentation factors. We analyzed clinical characteristics and disease burden in recreationally active and trained individuals with WALDA diagnosed by oral challenge test. Clinical characteristics, serological data, and quality of life (QOL) questionnaires were analyzed and completed with follow-up interviews.
View Article and Find Full Text PDFAnal Methods
September 2025
Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Despite great advances in decarbonylation of aldehydes using noble metals, the reaction is largely limited to high reaction temperatures and displays poor functional group tolerance. Herein, we report photo-irradiated decarbonylation of aldehydes, promoted by -W(N)(dppe), at room temperature. A wide range of substrates with diverse functional groups underwent decarbonylation efficiently to give the corresponding arene and alkane products in moderate to high yields.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Inorganic Chemistry I Institute, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
Herein, we report a solid-state polycyclotrimerization of 1,4-diethynylbenzene using mechanochemical activation in a ball mill, yielding a highly porous and hydrophobic hyperbranched polymer (HBP) with a specific surface area of up to 570 m g. The reaction, catalyzed by Fe(hmds) and conducted under solvent-free conditions, was optimized by varying milling time and frequency. This method enables the efficient synthesis of insoluble, porous organic polymers with high yields (up to 95%) and offers an environmentally friendly alternative to traditional solution-based polymerizations.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDF