Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fuel cells convert chemical energy into electrical current with the use of an oxidant such as oxygen and have the potential to reduce our reliance on fossil fuels. To overcome the slow kinetics of the oxygen reduction reaction (ORR), platinum is often used as the catalyst. However, the scarcity and expense of platinum limits the wide-spread use of fuel cells. In the search for non-platinum oxygen reduction catalysts, metallomacrocycles have attracted significant attention. While progress has been made in understanding how metallomacrocycle-based molecules can catalyze the ORR, their low stability, remains an on-going challenge. Here we report an immobilization strategy whereby hemin (iron protoporphyrin IX, heme b) is converted into an oxygen reduction catalyst which could be operated for over 96 h, with turnover numbers >10. This represents a 3 orders of magnitude improvement over the best reported iron porphyrin ORR catalyst to date. The basis for this improvement in turnover is specific binding of the heme within a recombinant silk protein, which allows for separation of the porphyrin active sites. Use of the silk protein provides a scaffold that can be engineered to improve selectivity and efficiency. Through rational design of the heme binding site, a > 95% selectivity for a four-electron reduction of oxygen to water was obtained, equal to the selectivity obtained using platinum-based catalysts. This work represents an important advance in the field, demonstrating that metallomacrocycle-based ORR catalysts are viable for use in fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.110960DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
16
fuel cells
12
silk protein
8
oxygen
6
reduction
5
enhancement metallomacrocycle-based
4
metallomacrocycle-based oxygen
4
reduction catalysis
4
catalysis immobilization
4
immobilization tunable
4

Similar Publications

The present investigation sought to determine the cardiovascular responses to a commercially available KAATSU cuff system with rhythmic cuff inflation-deflation periods during leg exercise. Seventeen participants performed two-legged knee flexion/extension exercise at 25% of peak work rate (WR) with bilateral KAATSU cuffs applied to the proximal thigh (KAATSU) or work-rate matched control exercise (CTL). During KAATSU trials, the cuffs were set to Cycle Mode (repeated 30-s inflation; 5-s deflation) at progressively increasing cuff pressure (150-220 mmHg).

View Article and Find Full Text PDF

Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.

View Article and Find Full Text PDF

Effect of ECMO Flow Variations on Pulmonary Capillary Wedge Pressure in Patients With Cardiogenic Shock.

J Am Coll Cardiol

September 2025

Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.

Background: The hemodynamic effects of femoro-femoral venoarterial (VA) extracorporeal membrane oxygenation (ECMO) on pulmonary capillary wedge pressure (PCWP) remain poorly defined. High ECMO flow is believed to increase PCWP and the risk of pulmonary edema; yet, supporting in vivo physiological data are lacking.

Objectives: The purpose of this study was to evaluate the impact of incremental femoro-femoral VA-ECMO flow variations on PCWP, hemodynamic, and echocardiographic parameters in patients with cardiogenic shock during the early phase of VA-ECMO support, after stabilization.

View Article and Find Full Text PDF

Senolytic therapy increases replicative capacity by eliminating senescent endothelial cells.

Exp Gerontol

September 2025

Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Salk Institute for Biological Studies, La Jolla, CA, 92037, USA; Department of Molecular Biology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake Ci

Aging is the greatest risk factor for cardiovascular diseases (CVD) and is characterized by inflammation, oxidative stress, and cellular senescence. Cellular senescence is a state of persistent cell cycle arrest triggered by stressors such as DNA damage and telomere attrition. Senescent endothelial cells (ECs) can impair vascular function and promote inflammation, thereby contributing to CVD progression.

View Article and Find Full Text PDF

Advancing impactful, economical, and durable Co-based bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been crucial in developing sustainable energy technologies. In this work, Co and CoN nanoparticles (NPs)-incorporated S, N-doped carbon catalysts (Co/CoN/SNC) were prepared via direct pyrolysis of the CoDATT complex, exhibiting high bifunctional electrocatalytic performance for ORR and OER. The complex precursor, CoDATT, was synthesized for the first time using diaminoterthiophene (DATT) and CoCl.

View Article and Find Full Text PDF