Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Analysing the link between terrestrial ecosystem productivity (i.e., Net Primary Productivity: NPP) and extreme climate conditions is vital in the context of increasing threats due to climate change. To reveal the impact of changing extreme conditions on NPP, a copula-based probabilistic model was developed, and the study was carried out over 25 river basins and 10 vegetation types of India. Further, the resiliency of the terrestrial ecosystems to sustain the extreme disturbances was evaluated at annual scale, monsoon, and non-monsoon seasons. The results showed, 15 out of 25 river basins were at high risks, and terrestrial ecosystems in only 5 river basins were resilient to extreme climatic conditions. Moreover, at least 50% area under 4 out of 10 vegetation cover types was found to be facing high chances of a drastic reduction in NPP, and 8 out of 10 vegetation cover types were non-resilient with the changing extreme climate conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908652PMC
http://dx.doi.org/10.1038/s41598-019-55067-0DOI Listing

Publication Analysis

Top Keywords

river basins
12
terrestrial ecosystem
8
ecosystem productivity
8
extreme climatic
8
climatic conditions
8
extreme climate
8
climate conditions
8
changing extreme
8
terrestrial ecosystems
8
vegetation cover
8

Similar Publications

Comparative analysis of machine learning based dissolved oxygen predictions in the Yellow River Basin: The role of diverse environmental predictors.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

The Ordos Basin's Hangjinqi Shiligahan west zone Xiashihezi Formation 1 Member gas reservoir exhibits significant exploration and development potential. However, its sedimentation and reservoir characteristics are poorly understood. To address this, geological, seismic, macroscopic, and microscopic methods are combined.

View Article and Find Full Text PDF

Catastrophic climate events such as floods significantly impact infrastructure, agriculture, and the economy. The lower Gandak River basin in India is particularly flood-prone, with Bihar experiencing annual losses of life and property due to massive flooding. Identifying flood-prone zones in this region is essential.

View Article and Find Full Text PDF

Background: Nepal is highly affected by climate change, experiencing glacier melting, untimely rainfall, floods, landslides, forest fires, and droughts, which collectively impact over 10 million people. There is a larger impact of climate change on human health, but its impact on women's and girls' sexual and reproductive health and rights is yet to be explored. Thus, this study aims to understand the linkages between climate change and the unique impact on gender and sexual, and reproductive health and rights (SRHR).

View Article and Find Full Text PDF