Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment.

Pharmacol Rev

Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Med

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1124/pr.119.017897DOI Listing

Publication Analysis

Top Keywords

cholesterol efflux
16
cardiovascular disease
16
abca1 abcg1
16
atherosclerotic risk
12
cholesterol
10
disease treatment
8
atherosclerosis leading
8
risk factor
8
lipoprotein cholesterol
8
high-density lipoprotein
8

Similar Publications

Silicosis is a fatal occupational lung disease characterized by persistent inflammation and irreversible fibrosis. However, the pathogenesis of silicosis is currently unclear. In this study, a mouse model of silicosis was established by intranasal instillation of silica, and transcriptomic alterations in lung tissues were assessed by mRNA-sequencing.

View Article and Find Full Text PDF

Phosphatidylserine translocation, cholesterol spatial distribution, and acrosome reaction reliably distinguish sperm capacitation from cryoinjury in bovine sperm.

Cryobiology

September 2025

Laboratory of Teaching and Research in Pathology of Reproduction, Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil. Electronic address:

Sperm capacitation is a critical process for successful fertilization, involving multiple regulated cellular changes. On the other hand, cryopreservation induces membrane changes that can mimic capacitation, potentially leading to misinterpretation of sperm function. Distinguishing true capacitation from cryoinjury remains challenging, as both share surface markers despite involving distinct mechanisms and impacts on fertilization.

View Article and Find Full Text PDF

Cholesterol-dependent cytolysins (CDCs) constitute the largest group of pore-forming toxins and serve as critical virulence factors for diverse pathogenic bacteria. Several CDCs are known to activate the NLRP3 inflammasome, although the mechanisms are unclear. Here we discovered that multiple CDCs, which we referred to as type A CDCs, were internalized and translocated to the trans-Golgi network (TGN) to remodel it into a platform for NLRP3 activation through a unique peeling membrane mechanism.

View Article and Find Full Text PDF

Atherosclerosis is a chronic and progressive vascular disease involving the gradual accumulation of lipids, cholesterol, cellular debris, and fibrous elements within the arterial wall. This process leads to the thickening and hardening of arteries, resulting in restricted blood flow and reduced oxygen delivery to tissues. Over time, these pathological changes significantly elevate the risk of life‑threatening cardiovascular events, including myocardial infarction and ischemic stroke.

View Article and Find Full Text PDF

SPINK3-sperm interaction determines a stable sperm subpopulation with intact CatSper channel.

bioRxiv

August 2025

Instituto de Investigaciones Biológicas (IIB-FCEyN/CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.

Sperm capacitation involves proteolytic remodeling of membrane proteins, including components of the CatSper calcium channel, which is essential for hyperactivation and male fertility. Here, we identify the seminal protease inhibitor SPINK3, a known decapacitation factor that suppresses premature capacitation in the female tract, as the first physiological inhibitor of CATSPER1 processing. In mouse sperm, SPINK3 blocks capacitation-induced CATSPER1 cleavage, preserving a subpopulation with intact CatSper channels and lacking pTyr development in the flagellum.

View Article and Find Full Text PDF