Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo.

Results: Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4-2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate.

Conclusions: In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909574PMC
http://dx.doi.org/10.1186/s12870-019-2174-3DOI Listing

Publication Analysis

Top Keywords

mslac1
13
recombinant mslac1
12
miscanthus laccase
8
cell wall
8
transcription factors
8
miscanthus
6
vivo impact
4
impact mslac1
4
mslac1 miscanthus
4
laccase isoform
4

Similar Publications

Background: Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood.

View Article and Find Full Text PDF

K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose.

Int J Mol Sci

September 2015

Laboratorio de Bioquimica de Proteinas y Glicanos, Coordinacion de Ciencia de los Alimentos, Centro de Investigacion en Alimentacion y Desarrollo A.C., Hermosillo Sonora 83304, Mexico.

The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic.

View Article and Find Full Text PDF