98%
921
2 minutes
20
Electroconvulsive therapy (ECT) has been shown to be effective in schizophrenia, particularly when rapid symptom reduction is needed or in cases of resistance to drug treatment. However, there are no markers available to predict response to ECT. Here, we examine whether multi-parametric magnetic resonance imaging (MRI)-based radiomic features can predict response to ECT for individual patients. A total of 57 treatment-resistant schizophrenia patients, or schizophrenia patients with an acute episode or suicide attempts were randomly divided into primary (42 patients) and test (15 patients) cohorts. We collected T1-weighted structural MRI and diffusion MRI for 57 patients before receiving ECT and extracted 600 radiomic features for feature selection and prediction. To predict a continuous improvement in symptoms (ΔPANSS), the prediction process was performed with a support vector regression model based on a leave-one-out cross-validation framework in primary cohort and was tested in test cohort. The multi-parametric MRI-based radiomic model, including four structural MRI feature from left inferior frontal gyrus, right insula, left middle temporal gyrus and right superior temporal gyrus respectively and six diffusion MRI features from tracts connecting frontal or temporal gyrus possessed a low root mean square error of 15.183 in primary cohort and 14.980 in test cohort. The Pearson's correlation coefficients between predicted and actual values were 0.671 and 0.777 respectively. These results demonstrate that multi-parametric MRI-based radiomic features may predict response to ECT for individual patients. Such features could serve as prognostic neuroimaging biomarkers that provide a critical step toward individualized treatment response prediction in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.schres.2019.11.046 | DOI Listing |
Biomol Biomed
September 2025
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.
View Article and Find Full Text PDFTraffic Inj Prev
September 2025
Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.
Objective: Assessment of submarining occurrence in PMHS (Post-Mortem Human Subject) testing can be challenging, particularly for obese PMHS. This study investigates varied kinetic and kinematic response parameters as potential indicators of submarining. Data from 36 whole-body PMHS frontal sled tests conducted under varying boundary conditions were analyzed, incorporating three spring-controlled seat configurations, two extreme anthropometric profiles, two crash pulses, and two seatback angles.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Repetition suppression, the reduced neural response upon repeated presentation of a stimulus, can be explained by models focussing on bottom-up (i.e. adaptation) or top-down (i.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.
Gene signatures predictive of chemotherapeutic response have the potential to extend the reach of precision medicine by allowing oncologists to optimize treatment for individuals. Most published predictive signatures are only capable of predicting response for individual drugs, but most chemotherapy regimens utilize combinations of different agents. We propose a unified framework, called the chemogram, that uses predictive signatures to rank the relative predicted sensitivity of different drugs for individual tumors.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).
View Article and Find Full Text PDF