98%
921
2 minutes
20
Plasmacytoid dendritic cells (pDCs) are sensor cells with diverse immune functions, from type I interferon (IFN-I) production to antigen presentation, T cell activation, and tolerance. Regulation of these functions remains poorly understood but could be mediated by functionally specialized pDC subpopulations. We address pDC diversity using a high-dimensional single-cell approach: mass cytometry (CyTOF). Our analysis uncovers a murine pDC-like population that specializes in antigen presentation with limited capacity for IFN-I production. Using a multifaceted cross-species comparison, we show that this pDC-like population is the definitive murine equivalent of the recently described human AXL DCs, which we unify under the name transitional DCs (tDCs) given their continuum of pDC and cDC2 characteristics. tDCs share developmental traits with pDCs, as well as recruitment dynamics during viral infection. Altogether, we provide a framework for deciphering the function of pDCs and tDCs during diseases, which has the potential to open new avenues for therapeutic design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951814 | PMC |
http://dx.doi.org/10.1016/j.celrep.2019.11.042 | DOI Listing |
Clin Rheumatol
September 2025
Department of Dermatology, the First Affiliated Hospital, Army Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, China.
Background: Plasmacytoid dendritic cells (pDCs) are a specialized subset of dendritic cells known for their ability to produce type I interferon (IFN I), contributing to antiviral defense and the pathogenesis of autoimmune diseases like systemic lupus erythematosus (SLE). In SLE patients, pDCs are excessively activated, leading to overproduction of IFN-α, which plays a critical role in disease progression. However, no bibliometric analysis has been conducted on the relationship between pDCs and SLE.
View Article and Find Full Text PDFFASEB J
September 2025
Immunology Program, Laboratory of Immunology and Cellular Stress, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.
Zika virus (ZIKV) is a mosquito-borne flavivirus causing a major epidemic in the Americas in 2015. Dendritic cells (DCs) are leukocytes with key antiviral functions, but their role in ZIKV infection remains under investigation. While most studies have focused on the monocyte-derived subtype of DCs, less is known about conventional dendritic cells (cDCs), essential for the orchestration of antiviral adaptive immunity.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.
The innate immune system serves as the first line of defense against viral infections. Type I interferon (IFN-I) signaling, in particular, plays a crucial role in mediating antiviral immunity. Here, we identify Betrixaban (BT), a novel small-molecule compound that activates innate immune responses, leading to broad-spectrum antiviral effects.
View Article and Find Full Text PDFJ Med Virol
September 2025
Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil.
Mother-to-child transmission (MTCT) is the primary route of human T-lymphotropic virus type 1 (HTLV-1) infection. Although formula feeding reduces breastfeeding-associated transmission, MTCT still occurs, implicating pregnancy or delivery as key transmission windows. In this study, placental tissues from nine HTLV-1-positive mothers were analyzed using DNA/RNAscope, revealing low HTLV-1 DNA and RNA levels and a low RNA/DNA ratio, consistent with latent infection in the placenta and potentially explaining the low MTCT rate.
View Article and Find Full Text PDFCell Mol Life Sci
August 2025
Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX, 77030, USA.
The interplay between host innate immunity and pathogen evasion is a dynamic battle shaping infection outcomes. The Topical Collection "Regulation of Antiviral and Antimicrobial Innate Immunity and Immune Evasion" synthesizes findings from thirteen recent studies to elucidate the molecular mechanisms of innate immune signaling and pathogen countermeasures. Host pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and DNA sensor cyclic GMP-AMP synthase (cGAS), drive type I interferon (IFN-I) and interferon-stimulated genes (ISGs) responses, alongside processes like autophagy and inflammasome activation, to combat viral and bacterial infections.
View Article and Find Full Text PDF