Cerebral microbleed incidence, relationship to amyloid burden: The Mayo Clinic Study of Aging.

Neurology

From the Departments of Neurology (J.G.-R., A.A.R., R.D.B., M.M.M., D.S.K., R.C.P.), Health Sciences Research (T.L., J.G., J.A., S.A.P., M.M.M., W.K.), and Radiology (A.J.S., J.H., V.J.L., C.R.J., P.V., K.K.), Mayo Clinic, Rochester, MN.

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To determine the incidence of cerebral microbleeds (CMBs) and the association of amyloid PET burden with incident CMBs.

Methods: A total of 651 participants, age ≥50 years (55% male), underwent 3T MRI scans with ≥2 separate T2*-weighted gradient recalled echo sequences from October 2011 to August 2017. Eighty-seven percent underwent C Pittsburgh compound B (PiB) PET scans. Age-specific CMB incidence rates were calculated by using the piecewise exponential model. Using structural equation models (SEMs), we assessed the effect of amyloid load and baseline CMBs on future CMBs after considering the direct and indirect age, sex, vascular risk factors, and effects.

Results: Participants' mean age (SD) was 69.8 (10.0) years at baseline MRI, and 111 participants (17%) had ≥1 baseline CMB. The mean (SD) of the time interval between scans was 2.7 (1.0) years. The overall population incidence rate for CMBs was 3.6/100 person-years and increased with age: from 1.5/100 new CMBs at age 50 to 11.6/100 person-years at age 90. Using the piecewise exponential model regression, the incidence rates increased with age and the presence of baseline CMBs. The SEMs showed that (1) increasing age at MRI or carrying an 4 allele was associated with more amyloid at baseline, and higher amyloid, particularly occipital amyloid load, in turn increased the risk of a new lobar CMB; and (2) the presence of CMBs at baseline increased the risk of a lobar CMB and had a larger effect size than amyloid load.

Conclusions: Age and 4 carrier status act through amyloid load to increase the risk of subsequent lobar CMBs, but the presence of baseline CMBs is the most important risk factor for future CMBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988987PMC
http://dx.doi.org/10.1212/WNL.0000000000008735DOI Listing

Publication Analysis

Top Keywords

amyloid load
12
baseline cmbs
12
cmbs
10
age
9
amyloid
8
incidence rates
8
piecewise exponential
8
exponential model
8
future cmbs
8
increased age
8

Similar Publications

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Peripheral Inflammation Is Associated With Greater Neuronal Injury and Lower Episodic Memory Among Late Middle-Aged Adults.

J Neurochem

September 2025

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.

View Article and Find Full Text PDF

Despite genome-wide association studies (GWAS) of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci, the underlying disease mechanisms remain largely unclear. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Here, using our approach for identifying functional GWAS risk variants showing allele-specific open chromatin, we systematically identified putative causal LOAD-risk variants in human induced pluripotent stem (iPS)-cell-derived neurons, astrocytes and microglia, and linked a PICALM LOAD-risk allele to a microglial-specific role of PICALM in lipid droplet (LD) accumulation.

View Article and Find Full Text PDF

Biomarker-related phospho-tau217 appears in synapses around Aβ plaques prior to tau tangle in cerebral cortex of preclinical Alzheimer's disease.

Cell Rep

August 2025

Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan. Electronic addre

Phospho-tau protein p-tau181 is a cerebrospinal fluid biomarker for Alzheimer's disease (AD), while p-tau217 is the most sensitive plasma biomarker for cerebral amyloid β (Aβ) load prior to tau pathology in preclinical AD. Diagnostic and prognostic use of these p-tau biomarkers requires neuropathological interpretation. Here, we analyzed the cellular localization of biomarker p-tau species in postmortem human brains harboring different extents of Aβ plaque and tau pathology.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex neurodegenerative condition which, despite its high prevalence and socioeconomic impact on the world, has an etiology that remains poorly understood. The genetic causes of AD are complex and have been continuously studied for decades. They range from rare pathogenic, highly penetrant mutations in early-onset (EOAD) forms, which account for 5% of the cases to multiple-risk alleles across different genes in late-onset (LOAD) forms.

View Article and Find Full Text PDF