Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Patients with renal stones receive multiple computed tomography (CT) examinations. We investigated whether submillisievert (sub-mSv) CT for stone detection could reduce radiation dose at exposure levels comparable to kidney, ureter, and bladder (KUB) radiography.
Purpose: To evaluate the radiation dose exposure, diagnostic performance, and image quality of sub-mSv non-contrast CT using advanced modelled iterative reconstruction algorithm with spectral filtration for the detection of urolithiasis.
Material And Methods: A total of 145 consecutive patients underwent non-contrast CT using a third-generation dual-source scanner to obtain two datasets, i.e. 16.7% (sub-mSv CT, tube detector A) and 100% (standard-dose CT, combination of tube detector A and B) tube loads with spectral filtration. The performance of sub-mSv CT for the detection of stones was analyzed by two readers and compared with that of standard-dose CT. Image quality was measured subjectively and objectively.
Results: In total, 171 stones were detected in 79 patients. The mean effective radiation doses of sub-mSv CT was 0.3 mSv. The sensitivity and specificity values for diagnosis of stones measuring ≥3 mm was 95.1% and 100% for sub-mSv CT. The sensitivity and specificity for all stone detection was 74.9% and 97.8%, respectivey, for sub-mSv CT. The image quality was lower for sub-mSv CT than for standard-dose CT ( < 0.01).
Conclusion: Sub-mSv CT can be achieved with radiation doses close to KUB radiography. Sub-mSv CT with spectral filtration can be used to detect stones measuring ≥3 mm and be used as a follow-up imaging modality as an alternative to KUB radiography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0284185119890088 | DOI Listing |