98%
921
2 minutes
20
The successful implementation of spin-wave devices requires efficient modulation of spin-wave propagation. Using cobalt/nickel multilayer films, we experimentally demonstrate that nanometer-wide magnetic domain walls can be applied to manipulate the phase and magnitude of coherent spin waves in a nonvolatile manner. We further show that a spin wave can, in turn, be used to change the position of magnetic domain walls by means of the spin-transfer torque effect generated from magnon spin current. This mutual interaction between spin waves and magnetic domain walls opens up the possibility of realizing all-magnon spintronic devices, in which one spin-wave signal can be used to control others by reconfiguring magnetic domain structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aau2610 | DOI Listing |
IEEE Trans Biomed Eng
September 2025
Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.
View Article and Find Full Text PDFCereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFSkeletal Radiol
September 2025
Department of Orthopaedic Surgery, Northwestern University, Chicago, IL, USA.
Objective: To assess the ability of large language models (LLMs) to accurately simplify lumbar spine magnetic resonance imaging (MRI) reports.
Materials And Methods: Patients who underwent lumbar decompression and/or fusion surgery in 2022 at one tertiary academic medical center were queried using appropriate CPT codes. We then identified all patients with a preoperative ICD diagnosis of lumbar spondylolisthesis and extracted the latest preoperative spine MRI radiology report text.
Neuropsychopharmacology
September 2025
Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for neuropsychiatric disorders that shows initial efficacy, safety, and tolerability in adolescents with treatment-resistant depression. As research expands to clinical trials testing rTMS in youth with other diagnoses and at younger ages, it is important to consider how neurodevelopmental factors might moderate or mediate rTMS effects and factor this into clinical trial design. In the current paper, we review how key domains of neurodevelopment may interact with rTMS, including neuroanatomy, neural circuit network topography, neuroplasticity, hormones, state-dependent effects, and psychosocial development.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2025
College of Computer Science and Technology, China University of Petroleum East China - Qingdao Campus, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China, Qingdao, Shandong, 266580, CHINA.
Purpose: Cerebrovascular segmentation is crucial for the diagnosis and treatment of cerebrovascular diseases. However, accurately extracting cerebral vessels from Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) remains challenging due to the topological complexity and anatomical variability.
Methods: This paper presents a novel Y-shaped segmentation network with fast Fourier convolution and Mamba, termed F-Mamba-YNet.