98%
921
2 minutes
20
Background: Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and mortality. However, therapeutic benefit of ART is often limited by delayed drug-associated toxicity. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of ART regimens. NRTIs compete with endogenous deoxyribonucleotide triphosphates (dNTPs) in incorporation into elongating DNA chain resulting in their cytotoxic or antiviral effect. Thus, the efficacy of NRTIs could be affected by direct competition with endogenous dNTPs and/or feedback inhibition of their metabolic enzymes. In this paper, we assessed whether the levels of ribonucleotides (RN) and dNTP pool sizes can be used as biomarkers in distinguishing between HIV-infected patients with ART-induced mitochondrial toxicity and HIV-infected patients without toxicity.
Methods: We used data collected through a case-control study from 50 subjects. Cases were defined as HIV-infected individuals with clinical and/or laboratory evidence of mitochondrial toxicity. Each case was age, gender, and race matched with an HIV-positive without evidence of toxicity. We used a range of machine learning procedures to distinguish between patients with and without toxicity. Using resampling methods like Monte Carlo k-fold cross validation, we compared the accuracy of several machine learning algorithms applied to our data. We used the algorithm with highest classification accuracy rate in evaluating the diagnostic performance of 12 RN and 14 dNTP pool sizes as biomarkers of mitochondrial toxicity.
Results: We used eight classification algorithms to assess the diagnostic performance of RN and dNTP pool sizes distinguishing HIV patients with and without NRTI-associated mitochondrial toxicity. The algorithms resulted in cross-validated classification rates of 0.65-0.76 for dNTP and 0.72-0.83 for RN, following reduction of the dimensionality of the input data. The reduction of input variables improved the classification performance of the algorithms, with the most pronounced improvement for RN. Complex tree-based methods worked the best for both the deoxyribose dataset (Random Forest) and the ribose dataset (Classification Tree and AdaBoost), but it is worth noting that simple methods such as Linear Discriminant Analysis and Logistic Regression were very competitive in terms of classification performance.
Conclusions: Our finding of changes in RN and dNTP pools in participants with mitochondrial toxicity validates the importance of dNTP pools in mitochondrial function. Hence, levels of RN and dNTP pools can be used as biomarkers of ART-induced mitochondrial toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882363 | PMC |
http://dx.doi.org/10.1186/s12874-019-0848-z | DOI Listing |
Methods Cell Biol
September 2025
Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. Electronic address:
Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.
View Article and Find Full Text PDFHeart Rhythm
September 2025
Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States. Electronic address:
Background: Electronic nicotine delivery systems (ENDS) utilize "E-liquids" in order to generate "E-vapor", an inhalable aerosolized mixture containing nicotine and flavors. Flavored ENDS are very popular among teens who vape, however, the possible cardiac electrophysiological harm of inhalation exposure to flavored ENDS are not fully understood.
Objective: To test if inhalation exposure to flavoring carbonyls in e-liquids compromises mitochondrial integrity, increases oxidative stress, and leads to cardiac electrophysiological toxicity.
Comp Biochem Physiol C Toxicol Pharmacol
September 2025
Çukurova University, Biotechnology Research and Application Center, Adana, Turkey; Çukurova University, Faculty of Fisheries, Department of Aquaculture, 01250, Adana, Turkey. Electronic address:
Pyridaben (PDB) is a widely used acaricide in agriculture, classified as highly toxic to aquatic life (H400, H410; USEPA) because it inhibits mitochondrial complex I. This study aimed to evaluate the subacute toxicity of PDB (0.20-0.
View Article and Find Full Text PDFJ AOAC Int
September 2025
Analytical Development Division, Senores Pharmaceuticals, Ahmedabad, India.
Background: Molnupiravir, an FDA-approved antiviral for the treatment of COVID-19, requires reliable analytical methods to ensure its quality and safety due to its therapeutic importance.
Objectives: This study presents the development of a stability-indicating RP-HPLC method for estimating molnupiravir-related impurities in capsule formulations. An unknown impurity is structurally elucidated using LC-TQ/MS and 1H and 1³C NMR spectroscopy.
Mol Cell Biol
September 2025
Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.
View Article and Find Full Text PDF