The connectome, a map of the structural and/or functional connections in the brain, provides a complex representation of the neurobiological phenotypes on which it supervenes. This information-rich data modality has the potential to transform our understanding of the relationship between patterns in brain connectivity and neurological processes, disorders, and diseases. However, existing computational techniques used to analyze connectomes are often insufficient for interrogating multi-subject connectomics datasets: many current methods are either solely designed to analyze single connectomes or leverage heuristic graph statistics that are unable to capture the complete topology of multiscale connections between brain regions.
View Article and Find Full Text PDFDetermining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
August 2025
Purpose: Our goal is to reconstruct 3D cerebral vessels from two 2D digital subtraction angiography (DSA) images acquired using a biplane scanner. This could provide intraoperative 3D imaging with 2-5 × spatial and 20 × temporal resolution of 3D magnetic resonance angiography, computed tomography angiography (CTA), or rotational DSA. Because many interventional radiology suites have biplane scanners, our method could be easily integrated into clinical workflows.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2025
Purpose: Stroke remains a leading cause of morbidity and mortality worldwide, despite advances in treatment modalities. Endovascular thrombectomy (EVT), a revolutionary intervention for ischemic stroke, is limited by its reliance on 2D fluoroscopic imaging, which lacks depth and comprehensive vascular detail. We propose a novel AI-driven pipeline for 3D CTA to 2D DSA cross-modality registration, termed DeepIterReg.
View Article and Find Full Text PDFThe integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures. Achieving this requires the rapid and precise alignment of 2D intraoperative images (., X-ray) with 3D preoperative volumes (.
View Article and Find Full Text PDFAdvances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research.
View Article and Find Full Text PDFObjective: The goal of this work was to methodically evaluate, optimize, and validate a self-supervised machine learning algorithm capable of real-time automatic registration and fluoroscopic localization of the spine using a single radiograph or fluoroscopic frame.
Methods: The authors propose a two-dimensional to three-dimensional (2D-3D) registration algorithm that maximizes an image similarity metric between radiographic images to identify the position of a C-arm relative to a 3D volume. This work utilizes digitally reconstructed radiographs (DRRs), which are synthetic radiographic images generated by simulating the x-ray projections as they would pass through a CT volume.
Background: Infection with the Human Immunodeficiency Virus (HIV) dramatically increases the risk of developing active tuberculosis (TB). Several studies have indicated that co-infection with TB increases the risk of HIV progression and death. Sub-Saharan Africa bears the brunt of these dual epidemics, with about 2.
View Article and Find Full Text PDFGenome-wide association studies have demonstrated significant links between human brain structure and common DNA variants. Similar studies with rodents have been challenging because of smaller brain volumes. Using high field MRI (9.
View Article and Find Full Text PDFBackground: Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and mortality. However, therapeutic benefit of ART is often limited by delayed drug-associated toxicity. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of ART regimens.
View Article and Find Full Text PDF