Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atmospheric water vapor increases as air temperature rises, which causes further warming. Thus, understanding the underlying causes of atmospheric water vapor change is vital in climate change research. Here, we conducted detection and attribution analyses of atmospheric precipitable water (PW) changes from 1973-2012 over China using an optimal fingerprinting method by comparing the homogenized radiosonde humidity data with CMIP5 model simulations. Results show that the increase in water vapor can be largely attributed to human activities. The effect of anthropogenic forcing (ANT) can be robustly detected and separated from the response to the natural external forcing (NAT) in the two-signal analysis. The moistening attributable to the ANT forcing explains most of the observed PW increase, while the NAT forcing leads to small moistening. GHGs are the primary moistening contributor responsible for the anthropogenic climate change, and the effect of GHGs can be also clearly detected and successfully attributed to the observed PW increases in a three-signal analysis. The scaling factor is used to adjust the CMIP5 model-projected PW changes over China and the observation-constrained future projections suggest that atmospheric water vapor may increase faster (slower) than that revealed by the raw simulations over whole (eastern) China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879575PMC
http://dx.doi.org/10.1038/s41598-019-54185-zDOI Listing

Publication Analysis

Top Keywords

water vapor
16
atmospheric water
12
detection attribution
8
atmospheric precipitable
8
precipitable water
8
water changes
8
climate change
8
water
6
atmospheric
5
attribution atmospheric
4

Similar Publications

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF

Cesium ions (Cs) are notable radioactive contaminants hazardous to humans and the environment. Among various remediation methods, adsorption is a practical way to remove Cs from water, and Prussian blue (PB) is well-known as an efficient Cs adsorbent. Although various PB derivatives have been proposed to treat Cs-contaminated water, soil remediation is still challenging due to the limited mobility of pollutants in soil.

View Article and Find Full Text PDF

Physicochemical Property Models for Poly- and Perfluorinated Alkyl Substances and Other Chemical Classes.

J Chem Inf Model

September 2025

United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, North Carolina 27711, United States.

To assess environmental fate, transport, and exposure for PFAS (per- and polyfluoroalkyl substances), predictive models are needed to fill experimental data gaps for physicochemical properties. In this work, quantitative structure-property relationship (QSPR) models for octanol-water partition coefficient, water solubility, vapor pressure, boiling point, melting point, and Henry's law constant are presented. Over 200,000 experimental property value records were extracted from publicly available data sources.

View Article and Find Full Text PDF

Devitrification and melting in vapor deposited ice.

J Chem Phys

September 2025

Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy.

The equilibration dynamics of ultrastable glasses subjected to heating protocols has attracted recent experimental and theoretical interest. With simulations of the mW water model, we investigate the devitrification and "melting" dynamics of both conventional quenched (QG) and vapor deposited (DG) amorphous ices under controlled heating ramps. By developing an algorithm to reconstruct hydrogen-bond networks, we show that bond ring statistics correlate with the structural stability of the glasses and allow tracking crystalline and liquid clusters during devitrification and melting.

View Article and Find Full Text PDF

Background A cold-sensitivity constitution (CSC), termed "Hiesho" in Japanese, is a common condition among young women that impairs quality of life through reduced peripheral circulation and autonomic imbalance. In our previous study, we reported that cold intolerance is associated with an imbalance in autonomic nervous function, as evaluated by heart rate variability (HRV). Conversely, footbathing increases parasympathetic nervous activity (PNA) and increases both peripheral blood flow and epidermal temperature.

View Article and Find Full Text PDF