Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Convolutional neural networks (CNNs) are widely recognized as the foundation for machine vision systems. The conventional rule of teaching CNNs to understand images requires training images with human annotated labels, without any additional instructions. In this article, we look into a new scope and explore the guidance from text for neural network training. We present two versions of attention mechanisms to facilitate interactions between visual and semantic information and encourage CNNs to effectively distill visual features by leveraging semantic features. In contrast to dedicated text-image joint embedding methods, our method realizes asynchronous training and inference behavior: a trained model can classify images, irrespective of the text availability. This characteristic substantially improves the model scalability to multiple (multimodal) vision tasks. We also apply the proposed method onto medical imaging, which learns from richer clinical knowledge and achieves attention-based interpretable decision-making. With comprehensive validation on two natural and two medical datasets, we demonstrate that our method can effectively make use of semantic knowledge to improve CNN performance. Our method performs substantial improvement on medical image datasets. Meanwhile, it achieves promising performance for multi-label image classification and caption-image retrieval as well as excellent performance for phrase-based and multi-object localization on public benchmarks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2019.2955476 | DOI Listing |