Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

miRNAs (MicroRNAs), known as noncoding and important endogenous factors regulating the expression protein-coding genes, are vital regulators in each biological process. Thus, this study aims to explore the key role of four microRNAs in regulating the spermatogenesis. To conduct this experiment, 55 infertile and fertile men provided the study with the sperm and testicular tissue samples. To study the spermatozoa in terms of the morphology, Diff-Quick was applied. Then, quantitative real-time polymerase chain reaction (RT-PCR) was conducted on samples. Our data indicated that in contrast to the miR-15b, significant increasing of miR-383 and miR-122 occurred in both severe oligoasthenoteratozoospermia (SOAT) and moderate oligoasthenoteratozoospermia (MOAT) compared to normal sperm group (N). In addition, it was observed that miR-15b and miR-122 increased in patients with nonobstructive azoospermia (NOA) compared with obstructive azoospermia (OA) group. Expression levels of target genes including P53, CASPASE-9 and CYCLIN D1 underwent principle changes according to miRNAs expression level. Our finding indicated that miRNAs had essential role in the regulation of spermatogenesis, and their expression altering was associated with sperm abnormalities. Thus, microRNAs can be introduced as useful biomarkers to determine male infertility reasons to choose the effective treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/and.13453DOI Listing

Publication Analysis

Top Keywords

microrna-based regulatory
4
regulatory circuit
4
circuit involved
4
sperm
4
involved sperm
4
sperm infertility
4
infertility mirnas
4
mirnas micrornas
4
micrornas noncoding
4
noncoding endogenous
4

Similar Publications

Hepatitis C virus (HCV) is a major global health burden affecting millions worldwide. A deeper understanding of and theories on the mechanisms of HCV replication and pathogenesis would bode well for diagnostics and therapeutics innovation. For example, HCV is known to modulate the host genes (e.

View Article and Find Full Text PDF

Recurrent spontaneous seizures in epilepsy cause a myriad of structural, circuit-related, and molecular modifications in the brain. The multifaceted molecular changes suggest that wide-reaching epigenetic mechanisms are altered in epilepsy. Indeed, it has been known for more than 15 years that a class of epigenetic regulators called microRNAs-short, noncoding RNAs that control the translation and stability of sometimes hundreds of mRNA targets-are dysregulated after seizures and in epilepsy in human patients and rodent models.

View Article and Find Full Text PDF

MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis.

View Article and Find Full Text PDF

Allosteric Modulation of SERCA Pumps in Health and Disease: Structural Dynamics, Posttranslational Modifications, and Therapeutic Potential.

J Mol Biol

May 2025

Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Sarco/endoplasmic reticulum (SR/ER) Ca-ATPase (SERCA) pumps are ubiquitous membrane proteins in all eukaryotic cells, playing a central role in maintaining intracellular calcium homeostasis by re-sequestering Ca ions from the cytosol into the SR/ER at the expense of ATP hydrolysis. SERCA pumps are well-characterized components of the calcium transport machinery in the cell, playing a role in various physiological processes, including muscle contraction, energy metabolism, secretion exocytosis, gene expression, synaptic transmission, cell survival, and fertilization. Allosteric regulation of SERCA pumps plays a key role in health and disease, and modulation of the SERCA pumps has emerged as a therapeutic approach for the treatment of cardiovascular, muscular, metabolic, and neurodegenerative disorders.

View Article and Find Full Text PDF

In a therapeutic context, supraphysiological expression of transgenes can compromise engineered phenotypes and lead to toxicity. To ensure a narrow range of transgene expression, we developed a single-transcript, microRNA-based incoherent feedforward loop called compact microRNA-mediated attenuator of noise and dosage (ComMAND). We experimentally tuned the ComMAND output profile, and we modeled the system to explore additional tuning strategies.

View Article and Find Full Text PDF