Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Embryo assessment and selection is a critical step in an in vitro fertilization (IVF) procedure. Current embryo assessment approaches such as manual microscopy analysis done by embryologists or semi-automated time-lapse imaging systems are highly subjective, time-consuming, or expensive. Availability of cost-effective and easy-to-use hardware and software for embryo image data acquisition and analysis can significantly empower embryologists towards more efficient clinical decisions both in resource-limited and resource-rich settings. Here, we report the development of two inexpensive (<$100 and <$5) and automated imaging platforms that utilize advances in artificial intelligence (AI) for rapid, reliable, and accurate evaluations of embryo morphological qualities. Using a layered learning approach, we have shown that network models pre-trained with high quality embryo image data can be re-trained using data recorded on such low-cost, portable optical systems for embryo assessment and classification when relatively low-resolution image data are used. Using two test sets of 272 and 319 embryo images recorded on the reported stand-alone and smartphone optical systems, we were able to classify embryos based on their cell morphology with >90% accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934406 | PMC |
http://dx.doi.org/10.1039/c9lc00721k | DOI Listing |