98%
921
2 minutes
20
Celiac disease is an immune-mediated enteropathy triggered by ingestion of gluten. Although its pathogenesis has been extensively studied and the contribution from both innate and adaptive immune responses has been reported, little is still known about the contribution of macrophages to the onset or maintenance of the disease. Macrophages are extremely plastic immune cells that can be directed toward a pro- or anti-inflammatory phenotype by the surrounding microenvironment. Of note, gliadin, the most prominent causative agent of the disease, has been reported to trigger the production of pro-inflammatory cytokines in this cell population. In the present study, we aimed at investigating how the intestinal milieu and more specifically the epithelium can shape the macrophage response to gliadin. Using patient-derived organoids we showed that the intestinal epithelium derived from celiac disease donors releases anti-inflammatory factors that curb the macrophage response to gliadin. Furthermore, we uncovered that the celiac macrophages were better responders than macrophages derived from non-celiac controls. Finally, we demonstrated that IFNγ released by the epithelium is in part responsible of the observed anti-inflammatory effect. Our data shed light on the cross-talk between the immune system and the epithelium and its critical role in the intestinal homeostasis. Furthermore, we provide more evidence how alterations in the innate immune machinery in celiac patients may contribute to the onset of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848268 | PMC |
http://dx.doi.org/10.3389/fnut.2019.00167 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.
View Article and Find Full Text PDFInfect Immun
September 2025
School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA.
Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.
Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).
View Article and Find Full Text PDF