A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Graphether: a two-dimensional oxocarbon as a direct wide-band-gap semiconductor with high mechanical and electrical performances. | LitMetric

Graphether: a two-dimensional oxocarbon as a direct wide-band-gap semiconductor with high mechanical and electrical performances.

Nanoscale

Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although many graphene derivatives have sizable band gaps, their electrical or mechanical properties are significantly degraded due to the low degree of π-conjugation. Besides the π-π conjugation, there exist hyperconjugative interactions arising from the delocalization of σ electrons. Inspired by the structural characteristics of a hyperconjugated molecule, dimethyl ether, we design a two-dimensional oxocarbon (named graphether) by the assembly of dimethyl ether molecules. Our first-principles calculations reveal the following findings: (1) monolayer graphether possesses excellent dynamic and thermal stabilities as demonstrated by its favourable cohesive energy, the absence of soft phonon modes, and high melting point. (2) It has a direct wide-band-gap energy of 2.39 eV, indicating its potential applications in ultraviolet optoelectronic devices. Interestingly, the direct band gap feature is rather robust against the external strains (-10% to 10%) and stacking configurations. (3) Due to the hyperconjugative effect, graphether has the high intrinsic electron mobility. More importantly, its in-plane stiffness (459.8 N m-1) is even larger than that of graphene. (4) The Pt(100) surface exhibits high catalytic activity for the dehydrogenation of dimethyl ether. The electrostatic repulsion serves as a driving force for the rotation and coalescence of two dehydrogenated precursors, which is favourable for the bottom-up growth of graphether. (5) Replacement of the C-C bond with an isoelectronic B-N bond can generate a stable Pmn21-BNO monolayer. Compared with monolayer hexagonal boron nitride, Pmn21-BNO has a moderate direct band gap energy (3.32 eV) and better mechanical property along the armchair direction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr08071fDOI Listing

Publication Analysis

Top Keywords

dimethyl ether
12
two-dimensional oxocarbon
8
direct wide-band-gap
8
direct band
8
band gap
8
graphether
5
graphether two-dimensional
4
direct
4
oxocarbon direct
4
wide-band-gap semiconductor
4

Similar Publications