98%
921
2 minutes
20
Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016467 | PMC |
http://dx.doi.org/10.1177/0963689719883823 | DOI Listing |
Eur Spine J
September 2025
Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Purpose: This study aimed to investigate the relationship between tissue bridges and bladder and bowel outcomes in chronic cervical spinal cord injury (SCI).
Methods: Between July 2020 and January 2024, 44 patients with chronic cervical SCI were retrospectively included in this cross-sectional study at a specialized SCI center. Lesion severity was assessed by tissue bridges, lesion length, lesion width, and lesion area.
Signal Transduct Target Ther
September 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.
Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.
View Article and Find Full Text PDFJ Anat
September 2025
Department of Anatomy and Cell Biology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan.
The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2025
Department of Pediatrics, School of Medicine, Duke University.
Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Me
Programmed cell death (PCD), which describes cell death regulated by a sequence of gene expression events, strongly impacts the prognosis of spinal cord injury (SCI). Nevertheless, the connections between the various PCD types and the cross-linked genes regulate that these types of cell death in SCI remain unclear. This study sought to identify and investigate the key genes connections that regulated PCD in SCI.
View Article and Find Full Text PDF