Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer is one of the leading causes of death worldwide, despite the large efforts to improve the understanding of cancer biology and development of treatments. The attempts to improve cancer treatment are limited by the complexity of the local milieu in which cancer cells exist. The tumor microenvironment (TME) consists of a diverse population of tumor cells and stromal cells with immune constituents, microvasculature, extracellular matrix components, and gradients of oxygen, nutrients, and growth factors. The TME is not recapitulated in traditional models used in cancer investigation, limiting the translation of preliminary findings to clinical practice. Advances in 3D cell culture, tissue engineering, and microfluidics have led to the development of "cancer-on-a-chip" platforms that expand the ability to model the TME in vitro and allow for high-throughput analysis. The advances in the development of cancer-on-a-chip platforms, implications for drug development, challenges to leveraging this technology for improved cancer treatment, and future integration with artificial intelligence for improved predictive drug screening models are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929691PMC
http://dx.doi.org/10.1002/smll.201901985DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
cancer treatment
8
cancer
7
cancer modeling-on-a-chip
4
modeling-on-a-chip future
4
future artificial
4
intelligence integration
4
integration cancer
4
cancer leading
4
leading death
4

Similar Publications

Multi-region ultrasound-based deep learning for post-neoadjuvant therapy axillary decision support in breast cancer.

EBioMedicine

September 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:

View Article and Find Full Text PDF

Correction: Consumer Data Is Key to Artificial Intelligence Value: Welcome to the Health Care Future.

J Particip Med

September 2025

Participatory Health, 20 Grasmere Ave, Fairfield, CT, 06824, United States, 1 (212) 280-1600.

View Article and Find Full Text PDF

Correction: Factors Affecting the Receptiveness of Chinese Internists and Surgeons Toward Artificial Intelligence-Driven Drug Prescription: Protocol for a Systematic Survey Study.

JMIR Res Protoc

September 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

[This corrects the article DOI: .].

View Article and Find Full Text PDF

Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.

View Article and Find Full Text PDF

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF