A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of Mechanical Instrumentation with Commercially Available Instruments Used in Supportive Peri-implant Therapy: An In Vitro Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To evaluate topographic changes and effectiveness of mechanical instrumentation upon machined (MA) and roughened (RG) surfaces of dental implants.

Materials And Methods: The coronal one-third of seven RG and seven MA implants was coated with a mixture of cyanoacrylate and toluidine blue dye to resemble calculus. Implants were cleaned with three curettes (SS: stainless steel, PT: plastic, TI: titanium), two ultrasonic tips (UM: metal tip, UP: plastic tip), a titanium brush (TB), and an air-polishing device (AA) until visibly clean. Additionally, a simulation of 1- and 5-year supportive peri-implant therapy (SPT) was performed on 14 implants using the aforementioned instruments with 20 strokes/40 s (T) or 100 strokes/200 s (T). Each implant was evaluated using stereomicroscopy, atomic force microscopy, and scanning electron microscopy.

Results: UM was the most effective instrument, with 0% average percentage of residual artificial calculus (RAC), followed by TB (2.89%) and UP (4.90%). SS was more effective than TI (15.43% vs 20.12% RAC, respectively), while PT failed to remove any deposit (100% RAC). AA completely removed deposits on RG surfaces but not MA surfaces (26.61% RAC). Noticeable topographic changes were observed between both implant surfaces. RG surfaces became less rough, whereas MA surfaces became rougher at both T and T with the exception of AA. Plastic- and titanium-like remnants were noted after debridement with PT, SS, and TI, respectively.

Conclusion: Artificial calculus removal by mechanical instrumentation, with the exception of PT, was proven to be clinically effective. All instruments induced minor to major topographic changes upon dental implant surfaces. AA did not remarkably change MA and RG surfaces at both micrometer and nanometer levels. Findings from this study may impact the selection of instruments or devices used during SPT protocols.

Download full-text PDF

Source
http://dx.doi.org/10.11607/jomi.7409DOI Listing

Publication Analysis

Top Keywords

mechanical instrumentation
12
topographic changes
12
supportive peri-implant
8
peri-implant therapy
8
surfaces
8
plastic titanium
8
artificial calculus
8
surfaces surfaces
8
implant surfaces
8
effects mechanical
4

Similar Publications