98%
921
2 minutes
20
Current traditional drugs such as enzyme inhibitors and receptor agonists/antagonists present inherent limitations due to occupancy-driven pharmacology as the mode of action. Proteolysis targeting chimeras (PROTACs) are composed of an E3 ligand, a connecting linker and a target protein ligand, and are an attractive approach to specifically knockdown-targeted proteins utilizing an event-driven mode of action. The length, hydrophilicity and rigidity of connecting linkers play important role in creating a successful PROTAC. Some PROTACs with a triazole linker have displayed promising anticancer activity. This review provides an overview of PROTACs with a triazole scaffold and discusses its structure-activity relationship. Important milestones in the development of PROTACs are addressed and a critical analysis of this drug discovery strategy is also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2019-0159 | DOI Listing |
Plant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong 250012, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 25001
The present study aimed to investigate the protective effects and underlying mechanisms of EPA-enriched phospholipids (EPA-PL) and DHA-enriched phospholipids (DHA-PL) against dexamethasone (DEX)-induced skeletal muscle atrophy both in vitro and in vivo. Results revealed that EPA-PL and DHA-PL significantly attenuated DEX-induced reduction in C2C12 myotube diameter. Additionally, supplementation with 1 % EPA-PL or 1 % DHA-PL for 6 weeks effectively alleviated DEX-induced declines in grip strength, skeletal muscle mass, and myofiber cross-sectional areas in mice.
View Article and Find Full Text PDFEur J Med Chem
September 2025
State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.
View Article and Find Full Text PDFJ Control Release
September 2025
Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China. Electronic address:
Radiotherapy (RT) is a key component of comprehensive cancer treatment regimens; nevertheless, its concomitant immunosuppression may diminish therapeutic efficacy. In this study, we developed an injectable hydrogel system for the local delivery of PROteolysis TArgeting Chimeras (PROTACs), achieved by loading tumor cell membrane-fused liposome nanoparticles to enhance the anti-tumor effect. The system targeted Bromodomain-containing protein 4 (BRD4), and combined treatment with RT promoted DNA damage, reduced DNA repair and decreased tumor cell proliferation and survival.
View Article and Find Full Text PDF