Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Repetitive transcranial magnetic stimulation (rTMS) can cause potentially useful changes in brain functional connectivity (FC), but the number of treatment sessions required is unknown. We applied the continual reassessment method (CRM), a Bayesian, adaptive, dose-finding procedure to a rTMS paradigm in an attempt to answer this question.

Materials And Methods: The sample size was predetermined at 15 subjects and the cohort size was set with three individuals (i.e., five total cohorts). In a series of consecutive daily sessions, we delivered rTMS to the left posterior parietal cortex and measured resting-state FC with fMRI in a predefined hippocampal network in the left hemisphere. The session number for each successive cohort was determined by the CRM algorithm. We set a response criterion of a 0.028 change in FC between the hippocampus and the parietal cortex, which was equal to the increase seen in 87.5% of participants in a previous study using five sessions.

Results: A ≥criterion change was observed in 9 of 15 participants. The CRM indicated that greater than four sessions are required to produce the criterion change reliably in future studies.

Conclusions: The CRM can be adapted for rTMS dose finding when a reliable outcome measure, such as FC, is available. The minimum effective dose needed to produce a criterion increase in FC in our hippocampal network of interest at 87.5% efficacy was estimated to be greater than four sessions. This study is the first demonstration of a Bayesian, adaptive method to explore a rTMS parameter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657658PMC
http://dx.doi.org/10.1111/ner.13052DOI Listing

Publication Analysis

Top Keywords

repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
continual reassessment
8
reassessment method
8
sessions required
8
bayesian adaptive
8
parietal cortex
8
hippocampal network
8
greater sessions
8

Similar Publications

Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.

View Article and Find Full Text PDF

Predictive and mechanistic biomarkers of treatment response to Transcranial Magnetic Stimulation (TMS) in Psychiatric and Neurocognitive Disorders, identified via TMS-Electroencephalography (EEG) and Resting-State EEG: A systematic review.

J Affect Disord

September 2025

Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Seniors Mental Health Program, Department of Psychiatry and Neurosciences, McMaster University, Hamil

Electroencephalography (EEG) is a comparatively inexpensive and non-invasive recording technique of neural activity, making it a valuable tool for biomarker discovery in transcranial magnetic stimulation (TMS). This systematic review aimed to examine mechanistic and predictive biomarkers, identified through TMS-EEG or resting-state EEG, of treatment response to TMS in psychiatric and neurocognitive disorders. Nineteen articles were obtained via Embase, APA PsycInfo, MEDLINE, and manual search; conditions included, unipolar depression (k = 13), Alzheimer's disease (k = 3), bipolar depression (k = 2), and schizophrenia (k = 2).

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation alleviates radiation-induced brain injury in rats: involving the inhibition of ferroptosis.

Neurosci Lett

September 2025

Institute of Neuroscience & Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; NHC Key Laboratory of Neurodegenerative Disease (University of South China), Hengyang 421001 Hunan, PR China; The Second Affiliated Hospital, Brain Disease Resea

Radiation-induced brain injury (RIBI) is a prevalent complication following radiotherapy for head and neck tumors, and its effective therapeutic strategies are lacking. Ferroptosis, an iron-dependent cell death, has recently emerged as an important mechanism of radiation-induced cell death. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuro-interventional technique with antioxidant and neuroprotective properties.

View Article and Find Full Text PDF

Neurodevelopmental considerations for transcranial magnetic stimulation trials in youth.

Neuropsychopharmacology

September 2025

Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.

Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for neuropsychiatric disorders that shows initial efficacy, safety, and tolerability in adolescents with treatment-resistant depression. As research expands to clinical trials testing rTMS in youth with other diagnoses and at younger ages, it is important to consider how neurodevelopmental factors might moderate or mediate rTMS effects and factor this into clinical trial design. In the current paper, we review how key domains of neurodevelopment may interact with rTMS, including neuroanatomy, neural circuit network topography, neuroplasticity, hormones, state-dependent effects, and psychosocial development.

View Article and Find Full Text PDF

Cocaine use disorder (CUD) is characterized by cortico-striatal circuit dysregulation and high relapse rates, with repetitive transcranial magnetic stimulation (rTMS) emerging as a potential neuromodulatory intervention. This study investigates rTMS-induced dynamic brain network reconfigurations in 30 CUD patients using longitudinal resting-state fMRI from the SUDMEX-TMS cohort. Applying Leading Eigenvector Dynamics Analysis (LEiDA) to phase-locking states, we identified four metastable network configurations mapped to canonical resting-state networks.

View Article and Find Full Text PDF