Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controlling extra charge carriers is pivotal in manipulating electronic, optical, and magnetic properties of various two-dimensional materials. Nonetheless, the ubiquitous hole doping of two-dimensional materials in the air and acids has been controversial in its mechanistic details. Here we show their common origin is an electrochemical reaction driven by redox couples of oxygen and water molecules. Using real-time photoluminescence imaging of WS and Raman spectroscopy of graphene, we capture molecular diffusion through the two-dimensional nanoscopic space between two-dimensional materials and hydrophilic substrates, and show that the latter accommodate water molecules also serving as a hydrating solvent. We also demonstrate that HCl-induced doping is governed by dissolved O and pH in accordance with the Nernst equation. The nanoscopic electrochemistry anatomized in this work sets an ambient limit to material properties, which is universal to not only 2D but also other forms of materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821894PMC
http://dx.doi.org/10.1038/s41467-019-12819-wDOI Listing

Publication Analysis

Top Keywords

two-dimensional materials
16
diffusion two-dimensional
8
water molecules
8
two-dimensional
5
materials
5
redox-governed charge
4
charge doping
4
doping dictated
4
dictated interfacial
4
interfacial diffusion
4

Similar Publications

Seamless integration of active devices into photonic integrated circuits remains a challenge due to the limited accessibility of the optical field in conventional waveguides, which tightly confine light within their cores. In this study, we propose a two-dimensional (2D) ultrathin waveguide as a photonic platform that enables efficient interaction between guided light and surface-mounted devices by supporting optical modes dominated by evanescent fields. We show that the guided light in a monolayer MoS film propagates over millimeter-scale distances with more than 99.

View Article and Find Full Text PDF

Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

Background And Aim: Echocardiographic assessment in equines is typically performed on standing animals; however, no studies have evaluated left ventricular function in anesthetized mules using high-dose xylazine. Given the unique pharmacokinetics in mules and their higher anesthetic requirements, this study aimed to assess the effects of acepromazine-xylazine-diazepam-ketamine anesthesia, using the upper limit xylazine dose (1.6 mg/kg), on the left ventricular size and function in mules.

View Article and Find Full Text PDF

Multi-orbital hybridization in a one-dimensional monolayer of DPh-BTBT.

Nanoscale

September 2025

Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

[1]Benzothieno[3,2-][1]benzothiophene (BTBT)-based molecules exhibit remarkably high hole mobility, sparking interest in their charge transport mechanisms. However, for thin films, the theoretically proposed mixed-orbital charge transport (MOCT) mechanism, which involves the hybridization of different frontier orbitals between neighboring molecules in the bulk, remains unexplored both experimentally and theoretically. In this study, we prepared a monolayer of 2,7-diphenyl-BTBT (DPh-BTBT) with a unique one-dimensional structure and investigated its molecular-level structure and electronic state.

View Article and Find Full Text PDF