Sci Adv
November 2024
Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions.
View Article and Find Full Text PDFTwo-dimensional molecular crystals have been beyond the reach of systematic investigation because of the lack or instability of their well-defined forms. Here, we demonstrate drastically enhanced photostability and Davydov splitting in single and few-layer tetracene (Tc) crystals sandwiched between inorganic 2D crystals of graphene or hexagonal BN. Molecular orientation and long-range order mapped with polarized wide-field photoluminescence imaging and optical second-harmonic generation revealed high crystallinity of the 2D Tc and its distinctive orientational registry with the 2D inorganic crystals, which were also verified with first-principles calculations.
View Article and Find Full Text PDFControlling extra charge carriers is pivotal in manipulating electronic, optical, and magnetic properties of various two-dimensional materials. Nonetheless, the ubiquitous hole doping of two-dimensional materials in the air and acids has been controversial in its mechanistic details. Here we show their common origin is an electrochemical reaction driven by redox couples of oxygen and water molecules.
View Article and Find Full Text PDFDespite their importance, chemical reactions confined in a low dimensional space are elusive and experimentally intractable. In this work, we report doubly anisotropic, in-plane and out-of-plane, oxidation reactions of two-dimensional crystals, by resolving interface-confined thermal oxidation of a single and multilayer MoS supported on silica substrates from their conventional surface reaction. Using optical second-harmonic generation spectroscopy of artificially stacked multilayers, we directly proved that crystallographically oriented triangular oxides (TOs) were formed in the bottommost layer while triangular etch pits (TEs) were generated in the topmost layer and that both structures were terminated with zigzag edges.
View Article and Find Full Text PDF