98%
921
2 minutes
20
Background: The etiological basis of glioma is poorly understood. We have used genetic markers in a Mendelian randomization (MR) framework to examine if lifestyle, cardiometabolic, and inflammatory factors influence the risk of glioma. This methodology reduces bias from confounding and is not affected by reverse causation.
Methods: We identified genetic instruments for 37 potentially modifiable risk factors and evaluated their association with glioma risk using data from a genome-wide association study of 12 488 glioma patients and 18 169 controls. We used the estimated odds ratio of glioma associated with each of the genetically defined traits to infer evidence for a causal relationship with the following exposures:Lifestyle and dietary factors-height, plasma insulin-like growth factor 1, blood carnitine, blood methionine, blood selenium, blood zinc, circulating adiponectin, circulating carotenoids, iron status, serum calcium, vitamins (A1, B12, B6, E, and 25-hydroxyvitamin D), fatty acid levels (monounsaturated, omega-3, and omega-6) and circulating fetuin-A;Cardiometabolic factors-birth weight, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, total triglycerides, basal metabolic rate, body fat percentage, body mass index, fasting glucose, fasting proinsulin, glycated hemoglobin levels, diastolic and systolic blood pressure, waist circumference, waist-to-hip ratio; andInflammatory factors- C-reactive protein, plasma interleukin-6 receptor subunit alpha and serum immunoglobulin E.
Results: After correction for the testing of multiple potential risk factors and excluding associations driven by one single nucleotide polymorphism, no significant association with glioma risk was observed (ie, PCorrected > 0.05).
Conclusions: This study did not provide evidence supporting any of the 37 factors examined as having a significant influence on glioma risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442418 | PMC |
http://dx.doi.org/10.1093/neuonc/noz209 | DOI Listing |
J Neurooncol
September 2025
Department of Neurosurgery, Paracelsus Medical University, Breslauer Straße 201, 90471, Nuremberg, Bavaria, Germany.
Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Neurology, The First Affiliated Hospital, Fujian Medical University, 350005 Fuzhou, Fujian, China.
Background: Glioblastoma (GBM) is an extremely aggressive brain tumor, marked by restricted therapeutic possibilities and a generally unfavorable prognosis. GBM's complexity and heterogeneity necessitate comprehensive genetic and immunological profiling to enhance therapeutic strategies.
Methods: The study integrated The Cancer Genome Atlas (TCGA) and Integrative Epidemiology Unit Open Genome-Wide Association Studies (IEU OpenGWAS) data to identify genetic factors influencing GBM using expression quantitative trait loci (eQTL) and genome-wide association studies (GWAS).
Brain Imaging Behav
September 2025
Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, South 4th Ring West Road 119, Fengtai District, Beijing, 100070, China.
To explore the effect of brain cognitive compensation on the pathogenesis of postoperative delirium (POD) in the frontal glioma patients. Eighty-four adult patients with unilateral frontal glioma who underwent elective craniotomy and 37 healthy controls were recruited. Primary outcomes were POD during postoperative 1-7 days, as assessed by Confusion Assessment Method.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea.. Electronic address:
Fludioxonil, a fungicide commonly used in agriculture, has been detected in livestock, such as cattle, even though it is primarily intended for use in plants. Unintended exposure to fludioxonil may compromise immune cells, cardiomyocytes, and glioma cells, indicating its potential risk as an environmental hazard. However, research on the detrimental effects of fludioxonil remains scarce, particularly regarding its impact on livestock, which are directly exposed to fludioxonil because of its widespread agricultural use.
View Article and Find Full Text PDFALTEX
August 2025
Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
Sonic hedgehog (SHH) is a major intercellular signaling pathway involved in the orchestration of embryogenesis, including orofacial morphogenesis. The SHH pathway is sensitive to disruption, including both genetic predisposition and chemical-induced disruption at multiple molecular targets including antagonism of the SHH signal transducer Smoothened (SMO). Here we report the adverse outcome pathway (AOP) 460 describing the linkage between antagonism of the SMO receptor, a key intermediate in the hedgehog signaling, and orofacial clefts (OFCs).
View Article and Find Full Text PDF